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Abstract. Knowledge graphs (KGs) are huge collections of primarily encyclope-
dic facts. They are widely used in entity recognition, structured search, question
answering, and other important tasks. Rule mining is commonly applied to dis-
cover patterns in KGs. However, unlike in traditional association rule mining, KGs
provide a setting with a high degree of incompleteness, which may result in the
wrong estimation of the quality of mined rules, leading to erroneous beliefs such
as all artists have won an award, or hockey players do not have children.
In this paper we propose to use (in-)completeness meta-information to better assess
the quality of rules learned from incomplete KGs. We introduce completeness-
aware scoring functions for relational association rules. Moreover, we show how
one can obtain (in-)completeness meta-data by learning rules about numerical
patterns of KG edge counts. Experimental evaluation both on real and synthetic
datasets shows that the proposed rule ranking approaches have remarkably higher
accuracy than the state-of-the-art methods in uncovering missing facts.

1 Introduction
Motivation. Advances in information extraction have led to general-purpose knowledge
graphs (KGs) containing billions of positive facts about the world (e.g., [3,2,1,21]). KGs
are widely applied in semantic web search, question answering, web extraction and
many other tasks. Unfortunately, due to their wide scope, KGs are generally incomplete.
To account for the incompleteness, KGs typically adopt the Open World Assumption
(OWA) under which missing facts are treated as unknown rather than false.

An important task over KGs is rule learning, which is relevant for a variety of appli-
cations ranging from knowledge graph curation (completion, error detection) [24,12,10]
to data mining and semantic culturonomics. However, since such rules are learned
from incomplete data, they might be erroneous and might make incorrect predictions
on missing facts. E.g., r1 : hasChild(X ,Y ) ← worksAt(X,Z), educatedAt(Y,Z)
could be mined from the KG in Fig. 1, stating that workers of certain institutions of-
ten have children among the people educated there, as this is frequently the case for
popular scientists. While r1 is clearly not universal and should be ranked lower than
the rule r2 : hasSibling(X ,Z )← hasFather(X ,Y ), hasChild(Y ,Z ), standard rule
measures like confidence (i.e., conditional probability of the rule’s head given its body)
incorrectly favor r1 over r2 for the given KG.
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Fig. 1: Example KG

Recently, efforts have been put into detecting the concrete numbers of facts of certain
types that hold in the real world (e.g., “Einstein has 3 children”) by exploiting Web
extraction and crowd-sourcing methods [23,26]. Such meta-data provides a lot of hints
about the topology of KGs, and reveals parts that should be especially targeted by rule
learning methods. However, surprisingly, despite its obvious importance, to date, no
systematic way of making use of such information in rule learning exists.

In this work we propose to exploit meta-data about the expected number of edges in
KGs to better assess the quality of learned rules. To further facilitate this approach, we
discuss a method for learning edge count information by extracting rules like “If a person
has more than 2 siblings, then his parents are likely to have more than 3 children.”

State of the art and its limitations. In [12] a completeness-aware rule scoring based
on the partial completeness assumption (PCA) was introduced. The idea of PCA is that
whenever at least one object for a given subject and a predicate is in a KG (e.g., “Eduard
is Einstein’s child”), then all objects for that subject-predicate pair (Einstein’s children)
are assumed to be known. This assumption was taken into account in rule scoring, and
empirically it turned out to be indeed valid in real-world KGs for some topics. However,
it does not universally hold, and treats cases inappropriately when edges in a graph are
randomly missing. Similarly, whether to count absence of contradiction as confirmation
for default rules was discussed in [8]. In [11] new completeness data was learned from
a KG by taking as ground truth completeness data obtained via crowd-sourcing. The
acquired statements were then used in a post-processing step of rule learning to filter out
predictions that violate these statements. However, this kind of filtering does not have
any impact on the quality of the mined rules and the incorrect predictions for instances
about which no completeness information exists.

Contributions. This work presents the first proper investigation of how meta-information
about (in-)completeness, more specifically, about the number of edges that should exist
for a given subject-predicate pair in a KG, can be used to improve rule learning. The
salient contributions of our work are as follows:

1. We present an approach that accounts for meta-data about the number of edges that
should exist for given subject-predicate pairs in the ranking stage of rule learning.



2. We discuss a method for the automated acquisition of approximate upper and lower
bounds on the number of edges that should exist in KGs.

3. We implement the proposed rule ranking measures and evaluate them both on real-
world and synthetic dataset, showing that they outperform existing measures both
with respect to the quality of the mined rules and the predictions they produce.1

2 Related Work
Rule learning. The problem of automatically learning patterns from KGs has gained
a lot of attention in the recent years. Some relevant works are [12,29], which focus
on learning Horn rules and either ignore completeness information, or make use of
completeness by filtering out predicted facts violating completeness in a post-processing
step. On the contrary we aim at injecting the statements into the learning process.

In the context of inductive and abductive logic programming, learning rules from
incomplete interpretations given as a set of positive facts along with a possibly incom-
plete set of negative ones was studied, e.g., in [18]. In contrast to our approach, this
work does not exploit knowledge about the number of missing facts, and neither do
the works on terminology induction, e.g., [28]. Learning nonmonotonic rules in the
presence of incompleteness was studied in hybrid settings [16,20], where a background
theory or a hypothesis can be represented as a combination of an ontology and Horn or
nonmonotonic rules. The main point in these works is the assumption that there might
be potentially missing facts in a given dataset. However, it is not explicitly mentioned
which parts of the data are (in)complete like in our setting. Moreover, the emphasis of
these works is on the complex reasoning interaction between the components, while we
are more concerned with techniques for deriving rules with high predictive quality from
large KGs. Recent work by d’Amato et al. [4] shows how in the presence of ontologies
that allow to determine incorrect facts, rules can be ranked by the ratio of correct versus
incorrect predictions. In contrast to our scenario of interest, in this work, the knowledge
about exact numbers of missing KG facts has not been exploited.

There are also a number of less relevant statistical approaches to completing knowl-
edge graphs based on, e.g., low-dimensional embeddings [31] or tensor factorization [30].

Completeness information. The idea of bridging the open and closed world assumption
by using completeness information was first introduced in the database world in [19,9],
and later adapted to the Semantic Web in [5]. For describing such settings, the common
approach is to fix the complete parts (and assume that the rest is potentially incomplete).

Recent work [11] has extended the rule mining system AMIE to mine rules about
completeness, that predict in which parts a knowledge graph may be complete or incom-
plete. The focus of the work is on the learning of association rules like “If someone has a
date of birth but no place of birth, then the place of birth is missing.” In contrast, we rea-
son about the missing edges trying to estimate the exact number (bounds on the number)
of edges that should be present in a KG. In [11] it has also been shown that completeness
information can be used to improve the accuracy of fact prediction, by pruning out in a
post-processing step those facts that are predicted in parts expected to be complete. In

1 The extended version of this paper is available as a technical report at https://raw.
githubusercontent.com/Tpt/CARL/master/technical_report.pdf
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the present paper, we take a more direct approach and inject completeness information
already into the rule acquisition phase, in order to also prune away problematic rules,
not only individual wrong predictions.

Our cardinality statements (e.g., John has 3 children) encode knowledge about parts
of a KG that are (un)known, and thus should have points of contact with operators from
epistemic logic; we leave the extended discussion on the matter for future work.

3 Preliminaries
Knowledge graphs. Knowledge graphs (KG) represent interlinked collections of factual
information, and they are often encoded using the RDF data model [17]. The content
of KGs is a set of 〈subject predicate object〉 triples, e.g., 〈john hasChild alice〉. For
encyclopedic knowledge graphs on the semantic web, usually the open world assumption
(OWA) is employed, i.e., these graphs contain only a subset of the true information.

In the following we take the unique name assumption, and for simplicity, write
triples using binary predicates, like hasChild(john, alice). A signature of a KG G is
ΣG = 〈R, C〉, where R is the set of binary predicates and C is the set of constants
appearing in G. Following [5], we define the gap between the available graph Ga and the
ideal graph Gi, which contains all correct facts over R and C that hold in the real world.

Definition 1 (Incomplete data source). An incomplete data source is a pair G =
(Ga,Gi) of two KGs, where Ga ⊆ Gi and ΣGa = ΣGi .

Note that the ideal graph Gi is an imaginary construct whose content is generally not
known. What is known instead is to which extent the available graph approximates/lacks
information wrt. the ideal graph, e.g., “Einstein is missing 2 children and Feynman
none”). We formalize this knowledge as cardinality assertions in Sec. 4.
Rule learning. Association rule learning concerns the discovery of frequent patterns
in a data set and the subsequent transformation of these patterns into rules. Association
rules in the relational format have been subject of intensive research in ILP (see, e.g.,
[7] as the seminal work in this direction) and more recently in the KG community (see
[12] as the most prominent work). In the following, we adapt basic notions in relational
association rule mining to our case of interest.

A conjunctive query Q over G is of the form Q(X) :- p1(X1), . . . , pm(Xm). Its
right-hand side (i.e., body) is a finite set of atomic formulas over ΣG , while the left-hand
side (i.e., head) is a tuple of variables occurring in the body. The answer of Q on G is
the set Q(G) = {ν(X) | ν is a function from variables to C and ∀i : pi(ν(Xi)) ∈ G}.
As in [7], the support of Q in G is the number of distinct tuples in the answer of Q on G.

An association rule is of the form Q1 ⇒ Q2, such that Q1 and Q2 are both con-
junctive queries and Q1 ⊆ Q2, i.e., Q1(G′) ⊆ Q2(G′) for any possible KG G′. In this
work we exploit association rules for reasoning purposes, and thus (with some abuse of
notation) treat them as logical rules, i.e., for Q1 ⇒ Q2 we write Q2\Q1 ← Q1, where
Q2\Q1 refers to the set difference between Q2 and Q1 seen as sets of atoms.

Classical scoring of association rules is based on rule support, body support and
confidence, which in [12] for a rule r : H ← B with H = h(X,Y ) are defined as:

supp(r) := #(x, y) : ∃Z : B ∧ h(x, y) (1)



supp(B) := #(x, y) : ∃Z : B (2)

conf (r) :=
supp(r)

supp(B)
(3)

where #α : A denotes the number of α that fulfill the conditionA, and conf (r) ∈ [0, 1].
As in [12] we compute the support of the rule (body) w.r.t. to the head variables.

Example 1. Consider the KG in Fig. 1 and the rules r1 and r2 mined from it:
– r1 : hasChild(X ,Y )← worksAt(X,Z), educatedAt(Y, Z)

– r2 : hasSibling(X ,Z )← hasFather(X ,Y ), hasChild(Y ,Z )

The body and rule supports of r1 over the KG are supp(B) = 8 and supp(r1 ) = 2
respectively. Hence, we have conf (r1 ) =

2
8 . Analogously, conf (r2 ) = 1

6 . ut

Support and confidence were originally developed for scoring rules over complete
data. If data is missing, their interpretation is not straightforward and they can be
misleading. In [12], confidence under the Partial Completeness Assumption (PCA) has
been proposed as a measure, which guesses negative facts by assuming that data is
usually added to KGs in batches, i.e., if at least one child of John is known then most
probably all John’s children are present in the KG. The PCA confidence is defined as

confpca(r) :=
supp(r)

#(x, y) : ∃Z : B ∧ ∃y′ : h(x, y′) ∈ Ga
(4)

Example 2. We obtain confpca(r1 ) =
2
4 . Indeed, since carol and dave are not known

to have any children in the KG, four existing body substitutions are not counted in the
denominator. Meanwhile, we have confpca(r2 ) =

1
6 , since all people that are predicted

to have siblings by r2 already have siblings in the available graph. ut

Given a rule r and a KG G the application of r on G results in a rule-based graph
completion defined relying on the Answer Set semantics (see [13] for details), which for
positive programs coincides with the least model datalog semantics.

Definition 2 (Rule-based KG completion). Let G be a KG over the signature ΣG =
〈R, C〉 and let r be a rule mined from G, i.e. a rule over ΣG . Then the completion of G
is a graph Gr constructed from the answer set of r ∪ G.

Example 3. We have Gar1 = G ∪ { hasChild(john, dave), hasChild(carol ,mary),
hasChild(dave, dave), hasChild(carol , carol), hasChild(dave, bob),
hasChild(mary , dave) }. ut

Note that Gi is the perfect completion of Ga, i.e., it is supposed to contain all correct
facts with entities and relations from ΣGa that hold in the current state of the world.
The goal of rule-based KG completion is to extract from Ga a set of rulesR such that
∪r∈RGar is as close to Gi as possible.



4 Completeness-aware Rule Scoring
Scoring and ranking rules are core steps in association rule learning. A variety of mea-
sures for ranking rules have been proposed, with prominent ones being confidence,
conviction and lift. The existing (in-)completeness-aware rule measure in the KG context
(the PCA confidence (4)) has two apparent shortcomings: First, it only counts as coun-
terexamples those pairs (x, y) for which at least one h(x, y′) is in Ga for some y ′ and
a rule’s head predicate h. Thus, it may incorrectly give high scores to rules predicting
facts for very incomplete relations, e.g., place of baptism. Second, it is not suited for
data in non-functional relations that is not added in batches, such as awards, where the
important ones are added instantly, while others much slower or even possibly never.

Thus, in this work we focus on the improvements of rule scoring functions by making
use of the extra (in-)completeness meta-data. Before dwelling into the details of our
approach we discuss the formal representation of such meta-data.
Cardinality statements. Overall, one can think of 6 different cardinality templates
obtained by fixing subject, predicate or object in a triple and report the number of
respective facts that hold in Gi. E.g., for 〈john hasChild mary〉 we can count (1)
children of john; (2) edges from john to mary ; (3) incoming edges to mary ; (4) facts
with john as a subject; (5) facts over hasChild relation; (6) facts with mary as an object.

In practice, numerical statements for templates (1) and (3) can be obtained using
web extraction techniques [23], from functional properties of relations or from crowd-
sourcing. For other templates things get trickier; one might be able to learn them from
the data or they could be defined by domain experts in topic-specific KGs. We leave
this issue for future work, and focus here only on templates (1) and (3), which could
be rewritten as the instances of the template (1) provided that inverse relations can be
expressed in a KG. For instance, #s : hasChild(s, john) = #o : hasParent(john, o)
for the predicates hasChild and hasParent , which are inverses of one another.

We represent the (in)completeness meta-data using cardinality statements by report-
ing (the numerical restriction on) the absolute number of facts over a certain relation in
the ideal graph Gi. More specifically, we define the partial function num that takes as
input a predicate p and a constant s and outputs a natural number corresponding to the
number of facts in Gi over p with s as the first argument:

num(p, s) := #o : p(s, o) ∈ Gi (5)

Naturally, the number of missing facts for a given p and s can be obtained as

miss(p, s) := num(p, s)−#o : p(s, o) ∈ Ga (6)

Example 4. Consider the KG in Fig. 1. and the following cardinality statements for it:
– num(hasChild , john)=num(hasChild ,mary)= 3; num(hasChild , alice)=1;
num(hasChild , carol)=num(hasChild , dave)=0;

– num(hasSibling , bob) = 3; num(hasSibling , alice) = num(hasSibling , carol) =
num(hasSibling , dave)=2.

We then have:
– miss(hasChild ,mary)=miss(hasChild , john)=miss(hasChild , alice)=1;
miss(hasChild , carol)=miss(hasChild , dave)=0;



– miss(hasSibling , bob)= miss(hasSibling , carol)=2;
miss(hasSibling , alice)=miss(hasSibling , dave)=1. ut

We are now ready to define the completeness-aware rule scoring problem. Given a
KG and a set of cardinality statements, completeness-aware rule scoring aims to score
rules not only by their predictive power on the known KG, but also wrt. the number of
wrongly predicted facts in complete areas and the number of newly predicted facts in
known incomplete areas.

In the following we discuss and compare three novel approaches for completeness-
aware rule scoring. These are (i) the completeness confidence, (ii) completeness precision
and recall, and (iii) directional metric. Henceforth, all examples consider the KG in
Fig. 1, rules from Ex. 1, and cardinality statements described in Ex. 4.

4.1 Completeness Confidence

In this work we propose to explicitly rely on incompleteness information in determining
whether to consider an instance as a counterexample for a rule at hand or not.

To do that, we first define two indicators for a given rule r : h(X ,Y )← B, reflecting
the number of new predictions made by r in incomplete (npi(r)) and, respectively,
complete (npc(r)) KG parts:

npi(r) :=
∑
x

min(#y : h(x, y) ∈ Gar \Ga,miss(h, x)) (7)

npc(r) :=
∑
x

max(#y : h(x, y) ∈ Gar \Ga −miss(h, x), 0) (8)

Note that summation is done exactly over those entities for which miss is defined.
Exploiting these additional indicators for r : h(X,Y ) ← B we obtain the following
completeness-aware confidence:

confcomp(r) :=
supp(r)

supp(B)− npi(r)
(9)

Example 5. Obviously, the rule r2 should be preferred over r1 . For our novel complete-
ness confidence, we get confcomp(r1 ) = 2

6 and confcomp(r2 ) = 1
2 , resulting in the

desired rule ordering, which is not achieved by existing measures (see Ex. 1 and 2). ut

Our completeness confidence generalizes both the standard and the PCA confidence:

Proposition 1. For every KG G and rule r it holds that

(i) under the Closed World Assumption (CWA) confcomp(r) = conf (r);
(ii) under the Partial Completeness Assumption (PCA) confcomp(r) = confpca(r).

In other words, if the graph is known to be fully complete, i.e., for all p ∈ R, s ∈ C
we have miss(p, s) = 0 , then confcomp is the same as the standard confidence. Similarly,
if miss(p, s) = 0 for such p, s pairs that at least one fact p(s, ) ∈ Ga exists and
miss(p, s) = +∞ for the rest, then confcomp is the same as the PCA confidence.



4.2 Completeness Precision and Recall

Further developing the idea of scoring rules based on their predictions in complete and
incomplete KG parts, we propose to consider the notions of completeness precision and
recall2 for rules defined in the spirit of information retrieval. Intuitively, rules having
high precision are rules that predict few facts in complete parts, while rules having high
recall are rules that predict many facts in incomplete ones. Rule scoring could then be
based on any weighted combination of these two metrics.

Formally, we define the precision and recall of a rule r : h(X ,Y )← B as follows:

precisioncomp(r) = 1− npc(r)

supp(B)
(10)

recallcomp(r) =
npi(r)∑

s miss(h, s)
(11)

The recall measure is similar to classical support measures, but now expresses how
many facts on KG parts known to be incomplete, are generated by the rule (the more the
better). The precision measure, in turn, assesses how many of the generated facts are
definitely wrong, namely those in complete parts (the more of these, the worse the rule).
In fact, this is an upper bound on the precision, as the other facts cannot be evaluated.

Example 6. It holds that npi(r1 ) = 2, npc(r1 ) = 4, while npi(r2 ) = 4, npc(r2 ) = 1,
resulting in precisioncomp(r1 )=0.5, recallcomp(r1 )≈0.67, and precisioncomp(r2 )≈
0.83, recallcomp(r2 )≈0.67, which lead to the expected relative rule ordering. ut

Limitations. While precision and recall are insightful when there are sufficiently many
predictions made in (in-)complete parts, they fail when the number of (in-)completeness
statements in comparison with the KG size is small. Consider, for instance, a rule that
predicts 1000 new facts over hasChild relation, out of which 2 are in complete, and 2
are in incomplete parts, and overall 1 million children are missing. This would imply a
precision of 99.8%, and a recall of 0.0002%, both of which are not very informative.

Therefore, next we propose to look at the difference between expected numbers of
predictions in complete and incomplete parts, or simply at their ratio.

4.3 Directional Bias

If rule mining does make use of completeness information, and both do not exhibit any
statistical bias, then intuitively the rule predictions and the (in)complete areas should be
statistically independent. On the other hand, correlation between the two indicates that
the rule-mining is (in)completeness-aware.

Example 7. Suppose in total a given KG stores 1 million humans, and we know that
10,000 (1%) of these are missing some children (incompleteness information), while we
also know that 1000 of the persons are definitely complete for children (0.1%). Let the set
of rules mined from a KG predict 50,000 new facts for the hasChild relation. Assuming

2 For brevity we skip the word ”completeness” if clear from the context.



independence between predictions and (in)completeness statements, we would expect
1% out of 50,000, i.e., 500 facts to be predicted in the incomplete areas and 0.1%, i.e., 50
in the complete KG parts. If instead we find 1000 children predicted for people that are
missing correspondingly many children, and 10 for people that are not missing these, the
former deviates from the expected value by a factor of 2, and the latter by a factor of 5.

Following the intuition from the above example, we propose to look at the extent of the
non-independence to quantify the (in)completeness-awareness of rule mining. Let us
consider predictions made by rules in a given KG, where E(#facts) is the expected number
of predictions and α = 0..1 is the weight given to completeness versus incompleteness.
Then the directional coefficient of a rule r is defined as follows:

direct coef (r) := α · E(npc(r))

npc(r)
+ (1− α) · npi(r)

E(npi(r))
(12)

Unlike the other measures that range from 0 to 1, the directional coefficient takes values
between 0 and infinity, where 1 is the default. If the ratio between the KG size and the
size of the (in)complete parts is the same as the ratio between the predictions in the
(in)complete parts and their total number, i.e., if the directional coefficient is 1, then the
statements do not influence the rule at all. The higher is the directional coefficient, the
more “completeness-aware” the rules are.

In practice, expected values might be difficult to compute, and statistical indepen-
dence is a strong assumption. An alternative that does not require knowledge about
expected values is to directly measure the proportion between predictions in complete
and incomplete parts. We call this the directional metric, which is computed as

direct metric(r) :=
npi(r)− npc(r)

2 · (npi(r) + npc(r))
+ 0.5 (13)

The metric is based on the same ideas as the directional coefficient, but does not require
knowledge about the expected number of predictions in complete/incomplete KG parts.
It is designed to range between 0 and 1 again, thus allowing convenient weighting with
other [0, 1] measures. The directional metric of a rule that predicts the same number of
facts in incomplete as in complete parts is 0.5, a rule that predicts twice as many facts in
incomplete parts has a value of 0.66, and so on.

Since the real-world KGs are often highly incomplete, it might be reasonable to put
more weight on predictions in complete parts. This can be done by multiplying predic-
tions made in complete parts by a certain factor. We propose to consider the combination
of a weighted existing association rule measure, e.g., confidence or conviction and the
directional metric, with the weighting factor β = 0..1. Using confidence, we obtain

weighted dm(r) = β · conf (r) + (1− β) · direct metric(r) (14)

Example 8. We get direct metric(r1 )≈0.33 and direct metric(r2 )=0.8. For β = 0.5
and confidence from Ex. 1, weighted dm(r1 ) ≈ 0.29 and weighted dm(r2 ) ≈ 0.48.

ut



5 Acquisition of Numerical Statements

As we have shown, exploitation of numerical (in-)completeness statements is very bene-
ficial for rule quality assessment. A natural question is where to acquire such statements
from in real-world settings. Various works have shown that numerical assertions can be
frequently found on the Web [5], obtained via crowd-sourcing [6], text mining [22] or
completeness rule mining [11]. We believe that mining numerical correlations concern-
ing KG edges and then assembling them into rules is a valuable and a modular approach
to obtain further completeness information, which we sketch in what follows.

We start with an available KG Ga and some statements of the form (5).
Step 1. For every cardinality num(p, s) = k, we create the facts p≤k(s) and p≥k(s).
For the pairs p ∈ R, s ∈ C with no available cardinality statements we construct the
facts p≥#o:p(s,o)∈Ga(s), encoding that outgoing p-edges from s might be missing in Ga,
as the graph is believed to be incomplete by default. Here, pcard with card ∈ {≤ ,≥ }
are fresh unary predicates not present in ΣGa , which describe (bounds on) the number
of outgoing p-edges for a given constant. We store all constructed facts over pcard in S .

We then complete the domain of each pcard predicate as follows. For every p≤k(s) ∈
S, if p≤k′(s′) ∈ S for some s′ ∈ C and k′ > k, we construct the rule p≤k′(X) ←
p≤k(X). Similarly, for every p≥k(s) ∈ S, if p≥k′(s′) ∈ S where k′ < k, we create
p≥k′(X)← p≥k(X). The constructed rules are then applied to the facts in S to obtain
an extended set Gcard of facts over pcard . The latter step is crucial when using a rule
mining system that is not doing arithmetic inferences (like x > 4 implies x > 3).
Step 2. We then use such a standard rule learning system, AMIE [12], on Ga ∪ Gcard to
mine rules like:
(1) pcard(X )← p′

card(X )
(2) pcard(X )← p′

card(X ), p′′
card(X )

(3) pcard(X )← p′
card(X ), r(X ,Y )

(4) pcard(X )← p′
card(X ), r(X ,Y ), p′′

card(Y )
(5) pcard(X )← r(X ,Y ), p′′

card(Y )

We rank the obtained rules based on confidence and select the top ones into the setR.
Step 3. Finally, in the last step we use the obtained ruleset R to derive further
numerical statements together with weights assigned to them. For that we compute
G′ =

⋃
r∈R{Gcard ∪ Ga}r. The weights of the statements are inherited from the rules

that derived them. We then employ two simple heuristics: (i) Given multiple rules
predicting the same fact, the highest weight for it is kept. We then post-process pre-
dictions made by different rules for the same subject-predicate pair as follows. (ii) If
p≤k(s), p≥k′(s) ∈ G′ for k′ > k, we remove from G′ predictions with the lowest weight
thus resolving the conflict on the numerical bounds.

From the obtained graph we reconstruct cardinality statements as follows.
– Given p≤k(s), p≥k (s) ∈ G′ with weights w and w′ we create a cardinality statement
num(p, s) = k with the weight min(w,w′).

– If p≤k(s), p≥k′(s) ∈ G′ for k′ < k, then we set k′ ≤ num(p, s) ≤ k.
– Among two facts p≤k(s), p≤k′(s) (resp. p≥k(s), p≥k′(s)) with k < k′ (resp. k > k′)

the first ones are kept and represented similar to 5.

Regular facts in G′ are similarly translated into their numerical representations.



Example 9. Consider the KG in Fig. 1 and the following cardinality statements for it:
num(hasChild , john)=num(hasSibling , bob)=3. Among others, Gcard contains the
facts: hasChild≥3 (john), hasSibling≥3 (bob), hasChild≥2 (mary), hasChild≥2 (john),
hasSibling≥2 (bob), hasSibling≥1 (dave), and hasSibling≥1 (alice). On the graph Ga ∪
Gcard , the confidence of hasSibling≥2(X)← hasFather(X,Y ), hasChild≥3(Y ) is 1

3
and 1 for hasSibling≥1 (X )← hasFather(X ,Y ), hasChild≥3 (Y ). ut

Ideally, provided that sufficiently many similar numerical correlations about edge
numbers are extracted, one can induce more general hypothesis involving arithmetic
functions like the number of person’s siblings is bounded by the number of his parents’
children plus 1 or the sum of person’s brothers and sisters equals the number of his
siblings. We leave these more complex generalizations for future work. Similarly, the
employed heuristic provide potential for more advanced voting/weighting schemes and
inconsistency resolution in the case of conflicting cardinality assertions.

6 Evaluation
6.1 Completeness-aware Rule Learning

We have implemented our completeness-aware rule learning approach into a C++ system
prototype CARL3, following a standard relational learning algorithm implementation
such as [14]. While our general methodology can be applied to mining rules of arbitrary
form, in the evaluation we focus only on rules of the form

r(X,Z)← p(X,Y ), q(Y,Z) (15)

We aim at comparing the predictive quality of the top k rules mined by our completeness-
aware approach with the ones learned by standard rule learning methods: (1) AMIE [12]
(PCA confidence) and (2) WarmeR [14] (standard confidence).
Dataset. We used two datasets for the evaluation: (i) WikidataPeople, which is a dataset
we have created from the Wikidata knowledge graph, containing 2.4M facts over 9
predicates4 about biographical information and family relationships of people; and (ii)
LUBM, which is a synthetic dataset describing the structure of a university [15].

For the WikidataPeople dataset, the approximation of the ideal KG (Gi) is obtained
by exploiting available information about inverse relations (e.g., hasParent is the inverse
of hasChild ), functional relations (e.g., hasFather , hasMother ) as well as manually
hand-crafted solid rules from the family domain like

hasSibling(X ,Y )← hasParent(X ,Z ), hasParent(Y ,Z ),X 6= Y .5

From WikidataPeople Gi containing 5M facts, we acquired cardinality statements by
exploiting properties of functional relations, e.g., hasBirthPlace , hasFather , hasMother
must be uniquely defined, and everybody with a hasDeathDate has a hasDeathPlace.
For the other relations, the PCA [12] is used. This resulted in 10M cardinality statements.

3 The source code and all the data are available at https://github.com/Tpt/CARL.
4 hasFather , hasMother , hasStepParent , hasSibling , hasSpouse, hasChild , hasBirthPlace,
hasDeathPlace , and hasNationality

5 see https://github.com/Tpt/CARL/tree/master/eval/wikidata for details

https://github.com/Tpt/CARL
https://github.com/Tpt/CARL/tree/master/eval/wikidata


Rule r conf (r) confpca(r) confcomp(r) dir metric(r)

hasSibling(X,Z)← hasSibling(X,Y ),
hasSibling(Y,Z) 0.10 0.10 0.89 0.98

hasStepParent(X,Z)← hasMother(X,Y ),
hasSpouse(Y,Z) 0.0015 0.48 0.0015 0.38

Table 1: Example of rules mined from WikidataPeople with global ratio of 0.5

LUBM Gi, with 1.2M facts, was constructed by running the LUBM data generator
for 10 universities, removing all rdf:type triples and introducing inverse predicates.
464K cardinality statements were obtained by counting the number of existing objects
for each subject-predicate pair, i.e., assuming the PCA on the whole dataset.

Experimental setup. To assess the effect of our proposed measures, we first construct
versions of the available KG (Ga) by removing parts of the data from Gi and introducing
a synthetic bias in the data (i.e., leaving many facts in Ga for some relations and few for
others). The synthetic bias is needed to simulate our scenario of interest, where some
parts of Ga are very incomplete while others are fairly complete, which is indeed the
case in real world KGs. In Wikidata, for instance, only for 3% of non-living people
sibling information is reported, while children data is known for 4%.

We proceed in two steps: First, we define a global ratio, which determines a uniform
percentage of data retained in the available graph. To further refine this, we then factor a
predicate ratio individually for each predicate. For the WikidataPeople KG, this ratio is
chosen as (i) 0.8 for hasFather and hasMother ; (ii) 0.5 for hasSpouse , hasStepParent ,
hasBirthPlace , hasDeathPlace and hasNationality ; (iii) 0.2 for hasChild ; and (iv) 0.1
for hasSibling . For the LUBM dataset, the predicate ratio is uniformly defined as 1 for
regular predicates and 0.5 for inverse predicates.

For a given predicate, the final ratio of facts in Ga retained from those in Gi is then
computed as min(1, 2 ∗ k ∗ n), where k is the predicate ratio and n is the global ratio.

The assessment of the rules learned from different versions of the available KG is
performed by comparing rule predictions with the approximation of Gi. More specifically,
every learned rule is assigned a quality score, defined as the ratio of the number of
predictions made by the rule in Gi \ Ga over the number of all predictions outside Ga.

quality score(r) =
|Gar ∩ Gi \ Ga|
|Gar \ Ga|

(16)

This scoring naturally allows us to control the percentage of rule predictions that hit
our approximation of Gi, similar to standard recall estimation in machine learning.

Results. From every version of the available KG we have mined rules of the form (15)
and kept only rules r with conf (r) ≥ 0.001 and supp(r) ≥ 10, whose head coverage6

is greater than 0.001. Figure 2 shows the number of kept rules and their average support
(1) for each global ratio used for generating Ga.

Evaluation results for WikidataPeople and LUBM datasets are in Figure 3. The
horizontal axis displays the global ratio used for generating Ga. We compared different
rule ranking methods as previously discussed, including standard confidence (3), PCA

6 Head coverage is the ratio of the number of predicted facts that are in Ga over the number of
facts matching the rule head.
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Fig. 2: Number of kept rules (#Rules) and their average support for WikidataPeople and LUBM
datasets
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confidence (4), completeness confidence (9), completeness precision (10), completeness
recall (11), directional metric (13) and weighted directional metric (β = 0.5) (14). The
Pearson correlation factor7 (vertical axis) between each ranking measure and the rules
quality score (16) is used to evaluate the measures’ effectiveness. We measured the
Pearson correlation, as apart from the ranking order (captured by, e.g., the Spearman’s
rank correlation), the absolute values of the measures are also insightful for our setting.

7 The Pearson correlation factor between two variables X and Y is defined by ρX,Y = cov(X,Y )
σXσY

with cov being the covariance and σ the standard deviation.
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Since facts are randomly missing in the considered versions of Ga, the PCA con-
fidence performs worse than the standard confidence for given datasets, while our
completeness confidence significantly outperforms both (see Tab. 1 for examples).

For the WikidataPeople KG, directional metric, weighted directional metric and
completeness confidence show the best results, followed by completeness precision.
For the LUBM KG, the completeness confidence outperforms the rest of the measures,
followed by the standard confidence and the weighted directional metric. Correlation
for completeness recall in the LUBM dataset behaved erratic and was slightly negative,
thus is not displayed at all. We conjecture that completeness recall might be unsuited
in certain settings, because it may reward rules that predict many facts, irrespective
of whether these facts are true or false. It is noteworthy that the standard confidence
performs considerably better on the LUBM KG with correlation factor higher than 0.9
than on the WikidataPeople KG. Still, completeness confidence shows better results,
reaching a nearly perfect correlation of 0.99. We hypothesize that this is due to the
bias between the different predicates of the LUBM KG being less strong than in the
WikidataPeople KG, where some predicates are missing a lot of facts, while others
just a few. Completeness precision, directional metric and weighted directional metric
outperform PCA confidence for most settings on the WikidataPeople KG.

6.2 Automated Acquisition of Cardinality Statements

To evaluate our method for automated acquisition of cardinality statements from a KG
we reused the WikidataPeople dataset–without completing the data.
Dataset. We have collected around 282K cardinality statements from various sources:

– Wikidata schema, i.e., hasFather , hasMother , hasBirthPlace , and hasDeathPlace
are functional properties and, thus, should have at most one value.

– The 7.5K values of the Wikidata predicate numberOfChildren;
– 663 novalue statements from Wikidata;
– 86K cardinality statements from [23] for the hasChild predicate of Wikidata;
– 182K cardinality statements are extracted from human-curated and complete Free-

base facts (1.6M). The mapping to Wikidata has been done using tools from [25].

Experimental Setup. We set aside random 20% of the cardinality statements as vali-
dation set, while the rest were incorporated into the WikidataPeople KG, as explained
in Sec. 5. We then ran our rule learning algorithm to mine cardinality rules. Rules with



support less than 200 or confidence smaller than 0.01 were pruned out. Examples of
mined rules along with their standard confidences include

– hasSibling≥3(x)← hasSibling(x, y), hasSibling≥4(y): 0.97
– hasChild≥3(x)← hasFather(y, x), hasSibling(y)≥4(y): 0.90.

The learned rules were then applied to the enriched WikidataPeople KG to retrieve
new exact cardinalities num(p, s) by only keeping (p, s) pairs where the higher and
lower bounds matched. The minimum of the standard confidence of the best rules used to
get the upper and lower bounds were assigned as the final confidence of each num(p, s).

Results. We aim to evaluate whether we can accurately recover the cardinality statements
in the validation set–as the gold standard–by utilizing the learned cardinality rules. For
different minimal confidence thresholds, the quality of the predicted cardinalities is
measured with standard precision and recall, which is presented in Figure 4. We get a
nearly perfect precision and a fair recall (around 40%) for the generated cardinalities,
which amount to 7.5M-10M depending on the threshold. Around one third of num(p, s)
statements indicate completeness of the KG for given (p, s) pairs. If we remove the
schema information from the KG, we get lower precision (around 70%) and recall
(around 1%) before a minimal confidence of 0.6, and similar values after.

7 Conclusion and Future Work

We have defined the problem of learning rules from incomplete KGs enriched with
the exact numbers of missing edges of certain types, and proposed three novel rule
ranking measures that effectively make use of the meta-knowledge about complete
and incomplete KG parts: completeness confidence, precision/recall and the (weighted)
directional metric. Our measures have been injected in the rule learning prototype CARL
and evaluated on real-world and synthetic KGs, demonstrating significant improvements
both w.r.t. the quality of mined rules and predictions they produce. Moreover, we have
proposed a method for acquiring cardinality meta data about edge counts from KGs.

For future work, we plan to encode the cardinality information into background
knowledge, e.g., using qualified role restrictions in OWL ontologies and exploit it to get
rid of faulty rules that introduce inconsistencies. Another interesting further direction is
to learn general correlations about edge counts that include mathematical functions, e.g.,
the number of siblings should be equal to the sum of the number of sisters and brothers.
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