
Demoing Platypus – A Multilingual Question
Answering Platform for Wikidata

Thomas Pellissier Tanon1,2, Marcos Dias de Assunção1, Eddy Caron1, and
Fabian M. Suchanek2

1 Université de Lyon, ENS de Lyon, Inria, CNRS, Univ. Claude-Bernard Lyon 1, LIP
2 LTCI, Télécom ParisTech

Abstract. In this paper we present Platypus, a natural language ques-
tion answering system on Wikidata. Our platform can answer complex
queries in several languages, using hybrid grammatical and template
based techniques. Our demo allows users either to select sample ques-
tions, or formulate their own – in any of the 3 languages that we currently
support. A user can also try out our Twitter bot, which replies to any
tweet that is sent to its account.

1 Introduction

Recent years have seen the rise of systems that can answer natural language
questions such as “Who is the president of the United States?”. These systems
usually rely on knowledge bases (KBs) – large, structured repositories of machine-
readable facts. In this paper, we propose to demonstrate a question answering
system called Platypus. It differs from existing systems in two main aspects.
First, it explicitly targets Wikidata, which is one of the largest general purpose
knowledge bases. Second, it supports multiple natural languages with minimal
adjustments. Our system is available online as an API3, as a Web interface4,
and as a Twitter bot5. A full description of the system is available as a technical
report [1].

2 Related Work

Question Answering (QA) has been an active domain of research since the early
1970’s. One group of approaches is based on the grammatical structure of the
questions, among which one of them [2] uses the formal grammar of the target
language. Our work, in contrast, relies solely on semantic parsing models, and
does not need expensive adaptations for different languages. Furthermore, the
work of [2] targets only domain-specific knowledge, while we target a knowledge
base like Wikidata. Another grammar-based approach employs a multilingual
semantic parser on top of universal dependencies [3]. Our work differs from this
approach, in that (1) we provide a working implementation on Wikidata and
(2) our logical representation matches directly the target KB, so that we can
work with specific output types such as strings, dates, numbers, and quantities.

3 https://qa.askplatyp.us
4 https://askplatyp.us
5 https://twitter.com/askplatypus



Our approach differs from [4] in that (1) we provide a method for question
answering rather than dispatching to an external service, and (2) we support
multiple languages.

Another set of approaches [5–9] relies on machine learning or neural networks
in order to build a KB query directly from the question, sometimes using tem-
plates. Compared to this previous work, Platypus provides a similar end-to-end
learning approach based on templates, but also a grammar-based approach that
can answer questions for which there is no template. Furthermore, our work
provides easy support for multiple languages, a task that is only starting to be
tackled by other works [10, 11].

3 Platypus System

Knowledge Base. Platypus works on a knowledge base. We choose Wikidata
for two reasons. First, it provides a large set of lexical representations for its
properties, in numerous languages [12] (e.g., “was born in”, “has the birthplace”,
and “est né à” for bornIn). Second, Wikidata is one of the largest general purpose
knowledge bases on the Semantic Web. We built a specialized service that can
perform fast entity-lookups on Wikidata, with support for edit distance and type
constraints. In order not to overload the Wikidata SPARQL endpoint, Platypus
has its own data storage. To keep our answers accurate, we perform a daily
replication of Wikidata to include updates.

Logical Representation. We represent questions not directly in SPARQL, but
rather in a custom logical representation. The representation is inspired by
dependency-based compositional semantics [13, 14], and adapted to work with
multiple languages. The advantage of this approach is that it allows the com-
position of partial representations. For instance, one could give the repre-
sentation {x | 〈dynamite, inventor, x〉} for “the inventor of dynamite” and
{y | 〈x, birthPlace, y〉} for “Where was X born?”; composing the two thus
gives the representation {y | ∃x 〈dynamite, inventor, x〉 ∧ 〈x, birthPlace, y〉}
for “Where was the inventor of dynamite born?”.

“Where was the inventor of dynamite born?”

1 Where ADV PronType=Int 0 ROOT
2 was VERB Mood=Ind—Number=Sing—Person=3—Tense=Past—VerbForm=Fin 1 cop
3 the DET Definite=Def—PronType=Art 4 det
4 inventor NOUN Number=Sing 1 nsubj
5 of ADP 6 case
6 dynamite NOUN Number=Sing 4 nmod
7 born NOUN Number=Sing 1 nmod

grammatical analysis

{y | ∃x 〈dynamite, inventor, x〉 ∧ 〈x, birthPlace, y〉}
semantic analysis

SELECT ?x WHERE { wd:Q80728 wdt:P61 ?y . ?y wdt:P19 ?x }
conversion to database request

Stockholm

request execution

Fig. 1. Pipeline execution using the grammatical analyzer



Platypus System. Our system takes as input a natural language question, and
produces as output a set of answers (RDF terms) from the KB. For this purpose,
the question is first transformed into one or several internal logical representa-
tions. We provide two different analyzers to this end: a primary one (the gram-
matical analyzer) and a secondary one (the template-based analyzer). Figure 1
shows the process with the grammatical analyzer.

Grammatical analyzer. The grammatical analyzer takes as input a natural lan-
guage question, and translates it into a logical representation. For this purpose, it
first parses the question with CoreNLP [15], or Spacy [16], yielding a dependency
tree. Then it transforms this tree to the logical representation using manually
designed rules. For example, we have the following rule:

parse

 Where

X

nsubj

 =
{
p | ∃x. x ∈ parset(X) ∧ 〈x, located in, p〉

}
This rule allows us to parse the question “Where is Paris?” as follows:

parse

 Where

is

cop

Paris

nsubj

 =

{
p

∣∣∣∣∣∃x. x ∈ parset(Paris)∧
〈x, located in, p〉

}

= {p | 〈Paris, located in, p〉}

Entity lookup is done using a special rule that returns the set of entities matching
a given label. When several rules can be applied, the analyzer returns several
results. Hence, parse does not return a single logical representation but a set
of possible representations. We will discuss below how to filter out the wrong
representations. Our rules depend as much as possible on the set of POS tags
and the set of dependency tags and not on the input language. Both tag sets are
language independent. When specific words are needed, e.g. for connection words
(such as “in” or “from”) and question words (such as “where” or “when”), we
use dictionaries. We have developed dictionaries for English and French, which
allows Platypus to answer questions in these two languages. Support of Spanish
is currently in development and German support is planned. Adding support
of a new language only requires to fill the dictionaries and make sure that all
grammatical constructions of the language are covered by the existing rules.

Template analyzer. The second Platypus analyzer is based on templates and
implemented using the RasaNLU [17] library. A template is a logical rep-
resentation with free variables, annotated with natural language questions.
For example {o | 〈 s , birth date, o〉} could be annotated with “When was

Georges Washingtons born?”. Our analyzer uses these templates in order to
find the logical representation of a given natural language question. For this
purpose, the analyzer first finds the template that best matches the question.
This is done using a classifier. We encode the question by the average of the
word embeddings of its words, and classify them with a linear support vector



machine. After this, the analyzer fills the logical representation slots. We use
conditional random fields [18] to recognize entity labels in the input sentence,
and we match them with the knowledge base entities. We trained this analyzer
in English using the WikidataSimpleQuestions dataset [19].

Query execution. We execute the two analyzers in parallel. The grammatical
one is executed for all languages and has the advantage of supporting complex
sentences. The template-based one works only in English, but has the advantage
of working well with short sentences that are not covered by the implemented
grammatical rules.

We rank the logical representations according to their likelihood of being
the correct interpretation of the question. For this, we take into account the
prominence of the mentioned entities in the KB. Finally, the representations are
converted into SPARQL, and executed one after the other on Wikidata, until
one of them yields an answer.

4 Demonstration setting

Our system is available online at https://askplatyp.us (see Figure. 2) and exe-
cutes the two analyzers. During the demo session, users can either choose from a
set of predefined questions, or ask Platypus any question they want. Since Wiki-
data is quite exhaustive, it is likely that Platypus can answer questions about
the city where the user was born, about the author of their favorite books, or the
children of a given president. Users can choose to ask in any of the 3 languages
that we currently support. The demo interface shows the grammatical analysis
of the question, the logical representation, the SPARQL query, as well as the
answer to the question – allowing the user to trace the entire process of question
analysis in Platypus.

Fig. 2. Platypus Web interface

For those conference attendees who cannot make to our demo, we offer a
special service: Platypus can also answer questions via Twitter. For this, the user
has to send their natural language question to the Twitter handle @askplatypus.



5 Conclusion

We demonstrate a fully functional multilingual natural language question an-
swering system for Wikidata. Our system can work with both a grammatical
analyzer and a template-based analyzer to parse natural language questions.
During the demo session, Platypus can be tried out in English, French, and
Spanish on our Web page https://askplatyp.us – or via our Twitter bot.

Acknowledgments. We thank the contributors of the first version of the Platypus
project: M. Chevalier, R. Charrondière, Q. Cormier, T. Cornebize, Y. Hamoudi,
V. Lorentz. Work supported by the LABEX MILYON (ANR-10-LABX-0070).

References

1. Pellissier Tanon, T., Dias De Assuncao, M., Caron, E., Suchanek, F.: Platypus – A
Multilingual Question Answering Platform for Wikidata. Technical report (2018)

2. Marginean, A.: Question answering over biomedical linked data with grammatical
framework. Semantic Web 8(4) (2017)

3. Reddy, S., Täckström, O., Petrov, S., Steedman, M., Lapata, M.: Universal se-
mantic parsing. In: EMNLP. (2017)

4. Athreya, R.G., Ngomo, A.C.N., Usbeck, R.: Enhancing community interactions
with data-driven chatbots – the dbpedia chatbot. In: WWW demo. (2018)

5. Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.N., Gerber, D., Cimiano, P.:
Template-based question answering over RDF data. In: WWW. (2012)

6. Sorokin, D., Gurevych, I.: End-to-end representation learning for question answer-
ing with weak supervision. QALD-7 (2017)

7. Yahya, M., Berberich, K., Elbassuoni, S., Ramanath, M., Tresp, V., Weikum, G.:
Natural language questions for the web of data. In: EMNLP-CoNLL. (2012)

8. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question an-
swering with memory networks. CoRR (2015)

9. Yin, W., Yu, M., Xiang, B., Zhou, B., Schütze, H.: Simple question answering by
attentive convolutional neural network. In: COLING. (2016)

10. Hakimov, S., Jebbara, S., Cimiano, P.: AMUSE: multilingual semantic parsing for
question answering over linked data. In: ISWC. (2017)

11. Diefenbach, D., Singh, K., Maret, P.: Wdaqua-core0: a question answering com-
ponent for the research community. QALD-7 (2017)

12. Kaffee, L., Piscopo, A., Vougiouklis, P., Simperl, E., Carr, L., Pintscher, L.: A
glimpse into babel: An analysis of multilinguality in wikidata. In: OpenSym. (2017)

13. Zelle, J.M., Mooney, R.J.: Learning to parse database queries using inductive logic
programming. In: AAAI. (1996)

14. Liang, P., Jordan, M.I., Klein, D.: Learning dependency-based compositional se-
mantics. Computational Linguistics 39(2) (2013)

15. Chen, D., Manning, C.D.: A fast and accurate dependency parser using neural
networks. In: EMNLP. (2014)

16. Honnibal, M., Johnson, M.: An improved non-monotonic transition system for
dependency parsing. In: EMNLP. (2015)

17. Bocklisch, T., Faulker, J., Pawlowski, N., Nichol, A.: Rasa: Open source language
understanding and dialogue management. CoRR (2017)

18. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In: ICML. (2001)

19. Diefenbach, D., Pellissier Tanon, T., Singh, K.D., Maret, P.: Question answering
benchmarks for wikidata. In: ISWC poster. (2017)


