
Learning How to Correct a Knowledge Base
from the Edit History

Thomas Pellissier Tanon

Télécom ParisTech

ttanon@enst.fr

Camille Bourgaux

DI ENS, CNRS, ENS, PSL Univ. & Inria

camille.bourgaux@ens.fr

Fabian Suchanek

Télécom ParisTech

suchanek@enst.fr

ABSTRACT
The curation of a knowledge base is a crucial but costly task. In this

work, we propose to take advantage of the edit history of the knowl-

edge base in order to learn how to correct constraint violations. Our

method is based on rule mining, and uses the edits that solved some

violations in the past to infer how to solve similar violations in the

present. The experimental evaluation of our method on Wikidata

shows significant improvements over baselines.

KEYWORDS
knowledge base; history; data cleaning; rule mining; Wikidata

ACM Reference Format:
Thomas Pellissier Tanon, Camille Bourgaux, and Fabian Suchanek. 2019.

Learning How to Correct a Knowledge Base from the Edit History. In Pro-
ceedings of the 2019 World Wide Web Conference (WWW ’19), May 13–
17, 2019, San Francisco, CA, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3308558.3313584

1 INTRODUCTION
Knowledge bases (KBs) play a key role in many applications and

lay at the core of the Semantic Web. They contain entities (such

as persons, cities, etc.) and statements about them (such as rela-

tionships between persons, places of residence, etc.). In this work,

we focus on RDFS-style KBs, such as Wikidata [38], YAGO [35] or

DBpedia [7]. The data quality of a KB is crucial for its usability.

However, it is usually very costly to check the correctness of the

data, because KBs can be huge (Wikidata, e.g., contains about 50

millions entities). Moreover, KBs are often built using methods that

are error-prone. For instance YAGO and DBpedia are automatically

extracted from Wikipedia. Wikidata, for its part, is a collaborative

KB that anyone can edit, with more than 18,000 active contributors.

A way of avoiding or at least detecting some of the flaws in

the data is to impose constraints on the KB. Such constraints can

enforce that some information must be present (e.g., imposing that

every human being has a birth date), or that some statements may

not occur (e.g., ensuring that a person is not also a city). Constraints

are related to, but different from, ontological rules: A constraint

imposes a certain condition, whereas an ontological rule infers

certain statements. For example, consider a KB that contains the

statement “Spinoza is a human being” without knowing any birth

date for Spinoza, and consider a rule “All human beings have a

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313584

birth date”. If the rule is taken as an ontological rule, then it would

just infer that Spinoza has some birth date. If the rule is taken as a

constraint, in contrast, the KB would be considered incorrect. Con-

straints are thus similar in spirit to database integrity constraints.

In practice, constraints often have exceptions. Therefore, it is useful

to allow data that does not respect them (in Wikidata, e.g., con-

straint violations are simply flagged). Nonetheless, by design, most

of the constraint violations are not exceptions but actual errors and

proposing to repair them is a good starting point when it comes to

improving KB quality.

In this paper, we aim at learning how to repair constraint viola-

tions. Our goal is to help a KB editor by suggesting how to clean

the data locally (providing a solution to a particular constraint

violation) or globally (providing rules that can be automatically

applied to all constraint violations of a given form once validated

by the editor). To do that, we take advantage of the edit history of

the KB. We use it to mine correction rules that express how differ-

ent kinds of constraint violations are usually solved. To the best

of our knowledge, this is the first work that builds on past users

corrections in order to infer possible new ones. We validate our

framework experimentally on Wikidata, for which the whole edit

history of more than 700 millions edits is available. Our experiments

show substantial improvements over baselines. More concretely,

our contributions are as follows:

• a formal definition of the problem of correction rule mining,

• a dataset of more than 67M past corrections for ten different

kinds of Wikidata constraints (13k constraints in total),
1

• a correction rule mining algorithm, together with an imple-

mentation for Wikidata, CorHist,
2

• a suggestion tool for users to correct data based on our mined

correction rules,
3

• an experimental evaluation based both on the prediction of

the corrections in the history and on user validation of the

suggested local corrections.

2 RELATEDWORK
We start with a brief discussion of works relevant to our problem

along three axes: constraints for KBs, KB cleaning, and rule learning.

Constraints. Constraints have long been used in databases and

KBs to express rules that the data should follow. Databases typi-

cally operate under the closed world assumption, where missing

facts are considered to be false. This allows for “completeness”

constraints such as tuple generating dependencies. KBs, in con-

trast, operate under the open world assumption, where missing

1
available at https://doi.org/10.6084/m9.figshare.7712720

2
available at https://github.com/Tpt/corhist

3
available at https://tools.wmflabs.org/wikidata-game/distributed/#game=43

https://doi.org/10.1145/3308558.3313584
https://doi.org/10.1145/3308558.3313584
https://doi.org/10.6084/m9.figshare.7712720
https://github.com/Tpt/corhist
https://tools.wmflabs.org/wikidata-game/distributed/#game=43

facts are not necessarily false. They thus classically have only “cor-

rectness” constraints, such as disjointness or functionality axioms

(corresponding to special cases of denial constraints and equality

generating dependencies in databases).

To express also completeness constraints, several works propose

to use description logics, with varying semantics [28, 37]. Another

possibility is to use queries that should or should not hold as con-

straints (see e.g., [24] for methods for writing constraint queries in

SPARQL). Other approaches define constraint languages to specify

conditions for RDF graph [9] validation, such as SHACL [22] or

ShEx [8]. It has been argued in [30] that description logics under the

closed world assumption are also suitable for constraint checking

in RDF, which can then be implemented with SPARQL queries. In

our work, we follow a similar path, using description logic axioms

as constraints for RDFS KBs, because it corresponds best to what

we observe in current real-world KBs.

Contrary to the above works, we do not aim at expressing con-

straints, but at repairing their violations. The correction rules we

learn for this purpose are similar in spirit to active integrity con-

straints [11], which specify for each constraint a set of possible

repair actions. This type of constraints has recently been applied

to description logic KBs as well [32]. Conditioned active integrity

constraints add conditions for choosing among the possible actions,

and we propose, in a similar spirit, to take into account the context

of the constraint violation to correct it. Different from the existing

work [11, 32], our goal is to mine correction rules automatically

from the edit history of the KB.

Knowledge base cleaning. Several recent approaches have dealt
with the interactive cleaning of KBs. The proposed methods detect

when a constraint is violated, compute the responsible facts, and

then interact with the user to find out how to update the KB. The

goal is then to minimize the number of questions the user has to

answer. This is done in various ways, which include taking into

account the dependencies among the facts to check or the interac-

tion between several constraints violations to define heuristics to

choose the best question to ask the user [2, 3, 5, 6].

Other approaches to improve the quality of a KB rely on statistics,

clustering, or structural aspects of the KBs. The work of [31] uses

statistics to add missing types to the KB, and to detect wrong state-

ments. The work of [25] exploits the observation that cycles in the

KB often contain wrong “IsA” relations. Again other approaches [1]

use crowdsourcing to detect Linked Data quality issues. We refer

the reader to Section 7.2 of [1] for a recent overview of approaches

for data quality assessment.

Our method also exploits KB constraints. However, it differs

from the above in that it learns the corrections automatically from

the edit history. It thus taps a source of knowledge that has so far

not been exploited.

Rule learning. Mining logical rules by finding correlations in a

dataset is a well-established research topic. In particular, learning

patterns in the data can be used for completing KBs [14, 36]. An

algorithm for learning conjunctive patterns from a KB enriched

with a set of rules is described in [20]. Methods similar to association

rule mining have also been used for induction of new ontological

rules from a KB [33]. Amore recent trend is to use embedding-based

models for KB completion. A comparison between these models and

usual rule learning approaches is reported in [27] and significant

recent works in this area include [19, 39, 40].

In this paper, we use a vanilla rule mining algorithm inspired

by [14]. Our contribution is not the rule mining per se, but the

application of rule mining to the edit history of a KB in order to

mine correction rules. This avenue has, to the best of our knowledge,

never been investigated.

3 PRELIMINARIES
In this work, we use description logics (DL) [4] as KB language

and as constraint language, because they are the foundation of the

Semantic Web standard OWL [16].

Syntax.We assume a set NC of concept names (unary predicates,

also called classes), a set NR of role names (binary predicates, also

called properties), and a set NI of individuals (also called constants).
An ABox (dataset) is a set of concept or role assertions of the form
A(a) or R(a,b), whereA ∈ NC, R ∈ NR, a,b ∈ NI. A TBox (ontology)
is a set of axioms whose form depends on the DL L in question, and

expresses relationships between concepts and roles (e.g., concept

or role hierarchies, role domains and ranges...). A knowledge base
(KB) K = T ∪ A is the union of an ABox A and a TBox T .

In this work, we assume that T is a flat QL TBox [23], i.e., that L
differs from the standard RDF Schema (RDFS) [17] only by allowing

inverse roles in role inclusions. More precisely, T can contain con-

cept inclusions of the form A1 ⊑ A2 (subclass), ∃P ⊑ A (domain or

range), and role inclusions P1 ⊑ P2 (subproperty), where A(i) ∈ NC
and P(i) := R | R− with R ∈ NR.

A KB can also be written as a set of RDF triples ⟨s,p,o⟩ where
s is the subject, p is the property, and o the object, using special

properties to translate concept membership and relationships be-

tween concepts and roles [29]. A concept assertion A(a) is written
as ⟨a, rdf:type,A⟩, and a role assertion R(a,b) as ⟨a,R,b⟩. Flat QL
TBox axioms can also be represented by single triples. For example,

A1 ⊑ A2 is written as ⟨A1, rdfs:subClassOf,A2⟩ and ∃R− ⊑ A is

written as ⟨R, rdfs:range,A⟩.

Semantics. We recall the standard semantics of DL KBs. An inter-
pretation has the form I = (∆I, ·I), where ∆I

is a non-empty set

and ·I is a function that injectively maps each a ∈ NI to a
I ∈ ∆I

(unique name assumption),⊤ to ∆I
, eachA ∈ NC toAI ⊆ ∆I

, and

eachR ∈ NR toRI ⊆ ∆I×∆I
. The function ·I is straightforwardly

extended to general concepts and roles, e.g. (¬B)I = ∆I \ BI
,

(R−)I = {(c,d) | (d, c) ∈ RI }, {a1, . . . ,an } = {aI
1
, . . . ,aIn },

(∃P · B)I = {c | ∃d : (c,d) ∈ PI,d ∈ BI }, (B1 ⊓ B2)
I = BI

1
∩ BI

2
,

(B1 ⊔ B2)
I = BI

1
∪ BI

2
. An interpretation I satisfies an inclusion

G ⊑ H , ifGI ⊆ H I
; it satisfies an axiom (func P) if PI

is functional;

it satisfies an axiom (trans P) if PI
is transitive; and it satisfiesA(a)

(resp. R(a,b)), if aI ∈ AI
(resp. (aI,bI) ∈ RI

). We write I |= α if

I satisfies the DL axiom α .
An interpretation I is a model of K = T ∪ A if I satisfies all

axioms in K . A KB is consistent if it has a model. A KB K entails a
DL axiom α if I |= α for every model I of K .

Queries. A conjunctive query (CQ) takes the form q(®x) = ∃®yψ (®x, ®y),
whereψ is a conjunction of atoms of the form A(t) or R(t, t ′) or of
equalities t = t ′, where t, t ′ are individual names or variables from

®x ∪ ®y. If ®x = ∅, q is a Boolean CQ (BCQ). A BCQ q is satisfied by

an interpretation I, written I |= q, if there is a homomorphism

π mapping the variables and individual names of q into ∆I
such

that: π (a) = aI for every a ∈ NI, π (t) ∈ AI
for every concept

atom A(t) inψ , (π (t), π (t ′)) ∈ RI
for every role atom R(t, t ′) inψ ,

and π (t) = π (t ′) for every t = t ′ in ψ . We also consider as BCQs

the queries true and false which are respectively always and never

satisfied by an interpretation. A BCQ q is entailed from K , written

K |= q, iff q is satisfied by every model of K . A tuple of constants

®a is a (certain) answer to a CQ q(®x) if K |= q(®a) where q(®a) is the
BCQ obtained by replacing the variables from ®x by the constants ®a.
We denote by answers(q(®x),K) the set of answers of q(®x) over K .

A union of CQs (UCQ) is a disjunction of CQs and has as answers

the union of the answers of the CQs it contains.

Canonical model. It is well-known that a flat QL KB K has a

canonical model IK such that for every BCQ q, K |= q iff IK |= q.
The domain of IK is the set of individual names that occur in K

and AIK = {a | A |= B(a),T |= B ⊑ A} for every A ∈ NC and

RIK = {(a,b) | A |= P(a,b),T |= P ⊑ R} for every R ∈ NR [23].

4 CONSTRAINTS
This section defines the constraints that can be imposed on a KB,

and relates the problem of checking that a KB complies with these

constraints to CQ answering over this KB.

Defining constraints. In this work, we consider two types of

constraints: consistency constraints (which express that some state-

ments are contradictory), and completeness constraints (which im-

pose that certain statements should hold in the KB as soon as some

others do). While violations of consistency constraints can only be

solved by removing statements, those of completeness constraints

can also be solved by adding statements.

Definition 1 (Constraint): Constraints are built from complex con-
cepts and roles defined by the following grammar rules:
blahP := R | R−

blahB := ⊤ | A | B ⊓ B | B ⊔ B | ∃P · {a1, . . . ,an } | ∃P · B
where R ∈ NR, A ∈ NC, a1, . . . ,an ∈ NI.

A consistency constraint is a concept inclusion of the form B1 ⊑
¬B2 or of the form B ⊑ {a1, . . . ,an }, a role inclusion of the form
P1 ⊑ ¬P2, or a functionality axiom of the form (func P).

A completeness constraint is a concept inclusion of the form B1 ⊑
B2, a role inclusion of the form P1 ⊑ P2, or a transitivity axiom of the
form (trans P).
This definition of constraints covers the “constraining” versions of

the majority of the most popular DL axioms used on the Web of

Data according to the ranking done by [15].

We assume without loss of generality that concepts of the form

B1 ⊔ B2 or {a1, . . . ,an } with n > 1 appear only on the right side

of inclusions, and not at all in negative inclusions of the form

B1 ⊑ ¬B2. For example, we assume that ∃P · (B1 ⊔ B2) ⊑ C is

rewritten as ∃P · B1 ⊑ C, ∃P · B2 ⊑ C , and B ⊑ ¬∃P · {a1, . . . ,an }
is rewritten as B ⊑ ¬∃P · {a1}, . . . ,B ⊑ ¬∃P · {an }. As usual, we
abbreviate ∃P · ⊤ as ∃P .

Example 1: As a running example, we consider the following KB
K = T ∪ A and set of constraints C inspired from Wikidata. Our
TBox T expresses that human beings and deities are persons. Our

ABox A provides information on several individuals. Our constraints
C state that there are three possible genders (consistency constraint),
that those who have a mother or are a mother must be persons or
animals, that a mother must have gender female, and that if a has
mother b, then b must have child a (completeness constraints).

T = { Human ⊑ Person, Deity ⊑ Person }

A = { Deity(Zeus), Deity(Rhea), hasGender(Zeus,masculine),

hasGender(Rhea, female), hasMother(Zeus, Rhea),

hasChild(Rhea, Zeus), Human(Spinoza),

hasMother(Spinoza,Marques) }

C = { Γ0 = ∃hasGender− ⊑ {male, female, nonbinary},

Γ1 = ∃hasMother ⊑ Person ⊔ Animal,

Γ2 = ∃hasMother− ⊑ Person ⊔ Animal,

Γ3 = ∃hasMother− ⊑ ∃hasGender · {female},

Γ4 = hasMother ⊑ hasChild− } ◁

We say that a KB K satisfies a constraint Γ ∈ C if IK |= Γ, where

IK is the canonical model of K . Otherwise, K violates Γ.

Example 2: In our running example, the KB K satisfies Γ1 since
∃hasMotherIK = {Zeus, Spinoza} and IK |= Person(Zeus)
and IK |= Person(Spinoza). However, it violates Γ2 because
IK ̸ |= Person(Marques) ∨ Animal(Marques) while Marques ∈

∃hasMother−IK . It violates Γ3 and Γ4 for similar reasons. Fi-
nally, {hasGender(Zeus,masculine), Γ0} has no model because of the
unique name assumption (which enforces that the interpretation of
masculine differs from those of male, female and nonbinary). Hence,
IK cannot be a model of Γ0. Thus, K violates Γ0. ◁

Note the semantic difference between the constraints and the ax-

ioms of the TBox: The axiom (Human ⊑ Person) in the TBox makes

every human an answer to the query asking for persons. In contrast,

if we had put the axiom in the set of constraints, it would have

required all human beings in the KB to be explicitly marked as per-

sons. As another example, consider the axiom (func hasBirthdate)
(which says that everyone can have at most one birth date). If this

axiom appears in the TBox, it renders the KB inconsistent whenever

a person is given two distinct dates of birth. This has severe conse-

quences on the reasoning capabilities, since everything is entailed

from an inconsistent KB. If this axiom is in the set of constraints,

in contrast, then distinct dates of birth lead only to the violation of

the constraint. This gives us relevant information without having

any impact on the usability of the KB.

Checking constraints. We show that our setting allows us to

check constraint satisfaction via CQ answering. For this purpose, we

use a function π , which maps each constraint Γ ∈ C to a rule of the

form ∃®yφ(®x, ®y) → ∃®zφ ′(®x, ®z). This function is defined recursively

as shown in Table 1. The left side of the rule is called the body and

its right side the head.

Example 3: In our running example, we obtain the following rules:
Γ0(x) : ∃yhasGender(y, x) →x =male∨x = female∨x =nonbinary
Γ1(x) : ∃yhasMother(x,y) → Person(x) ∨ Animal(x)
Γ2(x) : ∃yhasMother(y, x) → Person(x) ∨ Animal(x)
Γ3(x) : ∃yhasMother(y, x) → ∃z(hasGender(x, z) ∧ z = female)
Γ4(x,y) : hasMother(x,y) → hasChild(y, x) ◁

Table 1: Translation of DL axioms into rules. Variables that
appear in the right column and not in the left one are fresh.

π (⊤, x) = true
π (A, x) = A(x)

π ({a1, . . . ,an }, x) = x = a1 ∨ · · · ∨ x = an
π (R, x,y) = R(x,y)
π (R−, x,y) = π (R,y, x)
π (B1 ⊓ B2, x) = π (B1, x) ∧ π (B2, x)
π (B1 ⊔ B2, x) = π (B1, x) ∨ π (B2, x)
π (∃P · B, x) = ∃y(π (P, x,y) ∧ π (B,y))
π (B ⊑ C) = π (B, x) → π (C, x)
π (P ⊑ Q) = π (P, x,y) → π (Q, x,y)
π (B ⊑ ¬C) = π (B, x) ∧ π (C, x) → false
π (P ⊑ ¬Q) = π (P, x,y) ∧ π (Q, x,y) → false
π (func P) = π (P, x,y) ∧ π (P, x, z) → y = z
π (trans P) = π (P, x,y) ∧ π (P,y, z) → π (P, x, z)

The following proposition shows that this transformation is sound

and that the rule body and head can be rewritten as CQ and UCQ.

Proposition 1: For every constraint Γ ∈ C, π (Γ) can be rewritten
as a rule Γ(®x) : b(®x) → h(®x) where b(®x) is a CQ, h(®x) is a UCQ,
and for every flat QL KB K , K satisfies Γ iff answers(b(®x),K) ⊆

answers(h(®x),K).

Proof. By our assumptions on the form of the concepts that occur

in the left side of the inclusions or in the right side of a negative

inclusion, b(®x) := ∃®yφ(®x, ®y) is a CQ. It is easy to show by struc-

tural induction that for every concept B (resp. role P), π (B, x) (resp.
π (P, x,y)) can be written as a UCQ q(x) (resp. q(x,y)) and that

answers(q(x),K) = BIK (resp. answers(q(x,y),K) = PIK). If Γ is

a completeness constraint of the form B1 ⊑ B2 (resp. P1 ⊑ P2),
or a consistency constraint of the form B ⊑ {a1, . . . ,an }, the
result follows immediately since K satisfies Γ iff IK |= Γ. If Γ
is a consistency constraint of the form B1 ⊑ ¬B2 (resp. P1 ⊑

¬P2), answers(b(®x),K) = B
IK
1

∩ B
IK
2

(resp. answers(b(®x),K) =

P
IK
1

∩ P
IK
2

) and is empty iff Γ is satisfied. Since in this case

h(®x) := false, answers(h(®x),K) = ∅, and the desired relation holds.

If Γ is of the form (func P), since the answers of h(x,y, z) := y = z

over K are all possible tuples of the form (a,b,b), PIK is func-

tional iff answers(b(x,y, z),K) ⊆ answers(h(x,y, z),K). Finally, if

Γ is of the form (trans P), b(x,y, z) := π (P, x,y) ∧ π (P,y, z) and

h(x,y, z) := π (P, x, z), and it is easy to see that PIK is transitive iff

answers(b(x,y, z),K) ⊆ answers(h(x,y, z),K). □

Constraint violations. A constraint instance Γ(®a) of a constraint
Γ(®x) is obtained by replacing the variables ®x by the individual names

®a in Γ(®x). This notion allows us to define constraint violations:

Definition 2 (Constraint violation): A violation of a constraint Γ(®x)
inK is a minimal subsetV ⊆ K such that there exists ®a such thatV
violates Γ(®a) and K violates Γ(®a). We denote by Violations(K, Γ(®x))
the set of violations of Γ(®x).

In this definition, the requirement that K violates Γ(®a) may seem

superfluous. Yet, if Γ is a completeness constraint, it may be the

case that some V ⊆ K violates Γ(®a), while K satisfies it.

Example 4: In our running example, it is easy to see that the sub-
set V0 = {hasGender(Zeus,masculine)} is a violation of Γ0. Con-
sider now V = {hasMother(Spinoza,Marques)}. V is a violation
of Γ2, Γ3 and Γ4. Indeed, it violates Γ2(Marques), Γ3(Marques), and
Γ4(Spinoza,Marques) and K does not satisfy any of these constraint
instances. However, even if V violates Γ1(Spinoza), V is not a vi-
olation of Γ1 because {Human(Spinoza),Human ⊑ Person} ⊆ K

satisfies the head of Γ1(Spinoza). ◁

If a constraint instance Γ(®a) is violated, ®a ∈ answers(b(®x),K) and

®a < answers(h(®x),K), so its violations are the minimal subsets ofK

responsible for ®a ∈ answers(b(®x),K). The next proposition relates

constraint violations and justifications. A justification (also known

as an explanation, axiom pinpointing, or MinAs) for the entailment

of a BCQ is a minimal subset of the KB that entails the BCQ [21, 34].

Proposition 2: If K violates Γ(®a) : b(®a) → h(®a), a subset V ⊆ K

is a violation of Γ(®a) iff V is a justification of K |= b(®a).

5 CORRECTIONS
We now turn to correcting constraint violations.

Solutions. We will make use of atomic modifications of the KB to

define solutions to constraint violations.

Definition 3 (Atomic modification): An atomic modification of a
KB K is a pairm = (M+,M−) of two sets of assertions or L-axioms
that takes one of the following forms:
Addition:m = ({⟨s,p,o⟩}, ∅), where ⟨s,p,o⟩ < K
Deletion:m = (∅, {⟨s,p,o⟩}), where ⟨s,p,o⟩ ∈ K

Replacement: m = ({⟨s,p,o⟩}, {⟨s ′,p′,o′⟩}), where ⟨s,p,o⟩ < K ,
⟨s ′,p′,o′⟩ ∈ K , and ⟨s,p,o⟩ differs from ⟨s ′,p′,o′⟩ in exactly one
component.
Thus, an atomic modification consists of two sets M+

and M−
,

each of which is either the empty set or a singleton set. M+
will

be added to the KB, andM−
will be removed from the KB. Since

the sets contain at most one triple, we slightly abuse the notation

and identify the singletons with their elements (e.g., we will denote

the addition of ⟨s,p,o⟩ simply by (⟨s,p,o⟩, ∅)). A replacement is

equivalent to a sequence of a deletion and an addition. We chose to

keep it as an atomic modification because it corresponds to common

knowledge base curation tasks, such as correcting an erroneous

object for a given subject and predicate, or fixing a predicate misuse.

Atomic modifications can be used to solve a constraint violation,

as follows:

Definition 4 (Solution): A solution to a violationV of a constraint
instance Γ(®a) in K is an atomic modification (M+,M−) such that
there exists K ′ ⊆ K such that (V ∪ K ′ ∪M+) \M− satisfies Γ(®a).
We call (M+,M−) a solution toV for Γ(®a) in K .
Note that Γ(®a) can still be violated in (K ∪ M+) \ M−

if K

contains other violations of Γ(®a) for which (M+,M−) is not a

solution. For example, if Γ(a) : ∃xR(a, x) ∧ A(a) → false, and
K = {R(a,b),R(a, c),A(a)}, the deletion of R(a,b) is a solution to

the violation {R(a,b),A(a)}, but {R(a, c),A(a)} still violates Γ(a).
Note also that every constraint violation has at least one solution,

which consists of the deletion of any of its elements. Solutions may

also be additions or replacements, as in the following example:

Example 5: In our running example, the deletion (∅, hasGender
(Zeus,masculine)) and the replacement (hasGender(Zeus,male),

hasGender(Zeus,masculine)) are two possible solutions to V0 for
Γ0(masculine).

The deletion (∅, hasMother(Spinoza,Marques)) is a solution to
V for the three constraint instances Γ2(Marques), Γ3(Marques)
and Γ4(Spinoza,Marques). The additions (Human(Marques), ∅),
(hasGender(Marques, female), ∅) and (hasChild(Marques, Spino−
za), ∅) are solutions toV for respectively Γ2(Marques), Γ3(Marques)
and Γ4(Spinoza,Marques). ◁

Good solutions. Our goal is to find “good” solutions to constraint

violations, i.e., solutions that make the KB as close to the real world

as possible. The basic requirement for a “good” solution is that

it deletes only erroneous facts, and that it adds only true facts.

We also prefer replacements over deletions as long as they fulfill

this condition. For instance, in our running example, the replace-

ment (hasGender(Zeus,male), hasGender(Zeus,masculine)) is bet-
ter than the deletion (∅, hasGender(Zeus,masculine)), because it

corrects erroneous information instead of simply erasing it.

In some cases, there may be no “good” solution that consists of

a single atomic modification. Consider for example a completeness

constraint of the form A ⊑ ∃P · B violated by {A(a)}. If A(a) is
true, we should actually add both P(a,b) and B(b) for some b. We

choose to define solutions as atomic modifications nevertheless

to simplify the problem by reducing the size of possible solutions.

This is a limitation of our approach since we will not be able to

learn solutions that are not atomic. However, we will still be able to

learn to add B(b) to solve the aforementioned constraint violation

in the case where P(a,b) is already present.

The main difficulty in finding good solutions to constraint vio-

lations is that we do not have access to an oracle that knows the

validity of all facts. This is the problem that all KB cleaning ap-

proaches face (cf. Section 2). Our idea is to exploit the history of

the KB modifications to learn how to correct constraint violations.

Definition 5 (Edit history): The edit history of a KB is a sequence of
KBs (Ki)0≤i≤p = (Ti∪Ai)0≤i≤p such thatKi+1 = (Ki∪M

+
i)\M

−
i ,

where (M+
i ,M

−
i) is an atomic modification.

The edit history allows us to pinpoint how constraint violations

have been corrected in the past. In order to avoid learning from

vandalism or mistakes, we consider only those corrections that

have not been reversed:

Definition 6 (Past correction): A past correction is a solution
(M+,M−) to a violation V of a constraint instance Γ(®a) in Ki such
that there exist B andD such that the current KBKp = (Ki ∪B)\D

with M+ ⊆ B, M− ⊆ D,M+ ∩ D = ∅,M− ∩ B = ∅.
Intuitively, (B,D) corresponds to the sequence of additions and

deletions that leads from Ki to the current state of the KB Kp , that

contains the solution, and that does not “undo” it.

Relevant past corrections. During the history of a KB, users can

change not just the assertions of the KB, but also the TBox. However,

the TBox is typically much smaller and more stable than the ABox.

Therefore, the edit history of the TBox is not a rich ground for

correction rule mining. Moreover, we are interested in learning

solutions that correct constraint violations in the current KB Kp .

We thus consider only those past corrections that would have been

corrections also under the current TBox. For example, assume that

the TBox containedC ⊑ B. Assume thatC(a)was added to correct a

violation of the constraint A ⊑ B. If, in the meantime, the inclusion

C ⊑ B has been removed, we do not want to learn from this past

correction. The following definition formalizes these requirements.

Definition 7 (Relevant Past Correction): A relevant past correction

(M+,M−) to a violation V of a constraint instance Γ(®a) in Ki is
a past correction such that (i) M+ ∪M− contains only assertions,
and (ii) (V ∩ Ai) ∪ Tp contains a violation V ′ of Γ(®a) such that
(M+,M−) is also a solution to V ′ in Ai ∪ Tp .
We will now see how we can use the relevant past corrections to

mine correction rules.

6 FROM HISTORY TO CORRECTION RULES
In this section, we propose an approach based on rule mining to

learn correction rules for building solutions to constraint violations.

6.1 Extraction of the Relevant Past Corrections
Algorithm 1 constructs the set of relevant past corrections from the

KB history. It consists of three main steps. First, it constructs pat-

terns to spot KB modifications that could be part of a relevant past

correction. Then it uses these patterns to extract atomic modifica-

tions that solved some violation in the past. Finally, the relevant past

corrections are obtained by pruning those that have been reversed.

Algorithm 1 Construction of PCDataset

Input: set of constraints C, current TBox Tp , history (Ki)0≤i≤p
Output: set of relevant past corrections PCDataset

// Construct correction seed patterns

for all Γ ∈ C such that Γ(®x) : b(®x) → h(®x) do
Patterns(Γ) := {(_,A(®x)) |A(®x)∈b ′(®x),b ′(®x)∈rewrite(b(®x),Tp)}
if Γ is a completeness constraint then

Patterns(Γ) ∪= ({(A(®x), _) | A(®x) ∈ h′(®x),
h′(®x) ∈ rewrite(h(®x),Tp)})

// Extract past corrections

for 0 ≤ i ≤ p − 1 do
if (M+

i ,M
−
i) such that Ki+1 = (Ki ∪M+

i) \ M
−
i matches

some pattern in Patterns(Γ) then
PCDataset ∪= {⟨(M+

i ,M
−
i), Γ(®a),V, i⟩ |

V ∈ Violations(Ki , Γ(®a)) \ Violations(Ki+1, Γ(®a))}

// Remove reversed past corrections

for ⟨(M+
i ,M

−
i), Γ(®a),V, i⟩ ∈ PCDataset do

if M+
i ⊈ Kp orM−

i ∩ Kp , ∅ then
PCDataset \= {⟨(M+

i ,M
−
i), Γ(®a),V, i⟩}

Let us explain our algorithm with our running example. Con-

sider the constraint Γ0(x) : ∃yhasGender(y, x) → x =

male ∨ x = female ∨ x = nonbinary. Assume that

⟨Zeus, hasGender,masculine⟩ was added between K1 and K2, but

then replaced by ⟨Zeus, hasGender,male⟩ between K100 and K101.

The first goal of the algorithm is to find out that the removal

of ⟨Zeus, hasGender,masculine⟩ between K100 and K101 (as part

of the replacement) may be part of a relevant past correction. We

call this deletion a correction seed. Formally, a correction seed is a

deletion (∅,M−) or an addition (M+, ∅) such that (i) there exists

0 ≤ i ≤ p − 1 such that Ki+1 = (Ki ∪M+
i) \M

−
i withM−

i =M−

Table 2: Dataset PCDataset of relevant past corrections extracted for our running example.

Relevant past correction Constraint instance Violation KB index

({⟨Zeus, hasGender,male⟩}, {⟨Zeus, hasGender,masculine⟩}) Γ0(masculine) {⟨Zeus, hasGender,masculine⟩} 100

(resp.M+
i =M+

) and (ii) there exists a KB Tp ∪ D, where D is a

set of assertions, such that Tp ∪ D contains a violation V of some

constraint instance and (∅,M−) (resp. (M+, ∅)) is a solution to V .

Looking for correction seeds instead of computing the constraint

violations for all constraints on all KB versions has the advantage

of significantly reducing the search space.

To find such correction seeds efficiently, the first step of the

algorithm precomputes for each constraint a set of atomic modifi-

cation patterns that the possible correction seeds would match. In

the example there would be only one pattern: the deletion pattern

(_, ⟨?, hasGender, ?⟩), where _ can be anything so that it matches

both the deletion of ⟨?, hasGender, ?⟩ and its replacements. Since

we only consider past corrections that involve assertions, and want

them to be relevant for the current TBox, computing the correction

seed patterns can be done via query rewriting of the CQs in the

body b(®x) and the head h(®x) of the constraint w.r.t. Tp . Indeed, if
T is a flat QL TBox, any CQ q(®x) can be rewritten w.r.t. T into a

UCQ q′(®x) such that for every ABoxA, answering q(®x) over T ∪A

amounts to answering q′(®x) over A [23]. Each atom that occurs in

the rewriting of the body of a constraint corresponds to a deletion

pattern, and each atom that occurs in the rewriting of the head

of a completeness constraint corresponds to an addition pattern.

We collect the patterns for the constraint Γ in the set Patterns(Γ).
Note that it is not possible to solve a consistency constraint with an

addition, which is why such constraints have only deletion patterns.

The second step of the algorithm verifies, for each correc-

tion seed, whether it solved some constraint violation in the

past – i.e., whether Ki contains some violations of some con-

straint instances that are not in Ki+1. If so, the modification

between Ki and Ki+1 is a solution that solved these viola-

tions in Ki . In the example we would have found the vio-

lation {⟨Zeus, hasGender,masculine⟩} of Γ0(masculine) in K100,

which is not in K101. So we would have extracted that

(⟨Zeus, hasGender,male⟩, ⟨Zeus, hasGender,masculine⟩) is a solu-
tion that solved the violation {⟨Zeus, hasGender,masculine⟩} of

Γ0(masculine) in K100. We store this information as a tuple in the

relevant past corrections dataset (the PCDataset), as shown in Ta-

ble 2. Finding the constraint instances violated inKi orKi+1 is done

via CQ answering (Proposition 1), and computing their violations

amounts to computing BCQ justifications (Proposition 2).

The final step of the algorithm removes corrections that have

been reversed. The result is thus the set of relevant past corrections.

6.2 Correction Rule Mining

Correction rules. The previous algorithm has given us a list of

relevant past corrections (the PCDataset, exemplified in Table 2).

We now present our approach to mine correction rules from this

dataset and the KB history.

Definition 8 (Correction rule): A correction rule is of the form

r := [Γ(®x)] : E(®x, ®y, ®z) → (M+(®x, ®y),M−(®x, ®y)), where

• Γ(®x) is a constraint that can be partially instantiated, i.e., some
of its variables have been replaced by constants,

• (M+(®x, ®y),M−(®x, ®y)) is a pair of sets of at most one triple,
• E(®x, ®y, ®z) is a set of atoms called the context of the violation
such thatM−(®x, ®y) ⊆ E(®x, ®y, ®z),

and both (M+(®x, ®y),M−(®x, ®y)) and E(®x, ®y, ®z) are built from NC ∪

NR ∪ {rdf:type} ∪ NI ∪ ®x ∪ ®y ∪ ®z.
A correction rule can be applied to a KB K when there exist tuples

of constants ®a, ®b such that K violates Γ(®a) (recall that this can be
decided via CQ answering by Proposition 1) and K |= ∃®zE(®a, ®b, ®z).
The result of the rule application is then (M+(®a, ®b),M−(®a, ®b)).

Note that while the variables from E(®x, ®y, ®z) that do not appear in

Γ(®x) or in the head of r can be existentially quantified, those that

occur in the head of r have to be free: they have to be mapped to

individuals occurring in the KB in order to construct the result.

Example 6: In our running example, we would like to learn the
following correction rules:

r1 := [Γ0(masculine)] : {hasGender(y,masculine)}

→ (hasGender(y,male), hasGender(y,masculine))

r2 := [Γ2(x)] : {hasMother(y, x),Human(y)}

→ (Human(x), ∅)

The context of the second rule says that if x is the mother of a human,
then x must also be a human. The rule obtained by replacing Human
by Animal would express how to solve a violation of Γ2 in the context
where y is an animal. ◁

Mining correction rules. We mine correction rules with Algo-

rithm 2. This algorithm is an adaptation of the algorithm in [13, 14]

to our context, where we learn rules not from a KB but from the

PCDataset and the KB history. We first adapt the definitions of

the confidence and support from [13, 14] to our case. The support
of the body of a correction rule r for a constraint Γ is the number

of violations of Γ stored in the PCDataset that could have been

corrected by applying r . Such violations are associated with an

instance Γ(®a) of the partially instantiated Γ(®x) that appears in r

and with an index i such that Ki |= ∃®zE(®a, ®b, ®z) for some
®b. These

two conditions imply that r could be applied to the KB Ki . More-

over, we need to check that the result of applying r to Ki actu-

ally gives a solution to V . For example, consider the case where

PCDataset contains both ⟨(∅,R(a,b))), Γ(a), {R(a,b),A(a)}, i⟩ and
⟨(∅,R(a, c))), Γ(a), {R(a, c),A(a)}, j⟩ for Γ(a) : ∃xR(a, x) ∧ A(a) →
false. Both violations count for the support of the body of [Γ(a)] :
R(a, x) → (∅,R(a, x)) but only the second one counts for the sup-

port of the body of [Γ(a)] : R(a, c) → (∅,R(a, c)), even in the case

where Ki |= R(a, c). Formally, supbod (r) = |BSup | where

BSup = {V | ⟨_, Γ(®a),V, i⟩ ∈ PCDataset, ∃®b Ki |= ∃®zE(®a, ®b, ®z)

and the result of the application of r to Ki is a solution to V}.

The support of the rule r measures when the past correction is

exactly the result of the application of the rule in the cases where

it could be applied. Formally, suprule(r) = |RSup |, where

RSup = {V | ⟨(M+(®a, ®b),M−(®a, ®b)), Γ(®a),V, i⟩ ∈ PCDataset,

and Ki |= ∃®zE(®a, ®b, ®z)}.

Finally, the confidence of a correction rule r is conf (r) = suprule(r)
supbod (r)

.

Algorithm 2 Correction rule mining

Input: PCDataset, (Ki)0≤i≤p , minsup, minconf , θ
Output: correction rules

// Generate basic rules

BasicR := ∅

for all ⟨(M+(®a, ®b),M−(®a, ®b)), Γ(®a),V, i⟩ ∈ PCDataset do
r0 := [Γ(®a)] : M−(®a, ®b) → (M+(®a, ®b),M−(®a, ®b))

BasicR ∪= {σ (r0) | C ⊆ ®a ∪ ®b,σ : C ↣ Var,
suprule(σ (r0)) ≥ minsup, conf (σ (r0)) ≥ minconf }

// Refine the context part of the rules

q := [], q.enqueueAll(BasicR)
while q is not empty do
r := q.dequeue()
Output r
for all operators op do

for all r ′ ∈ op(r) do
if suprule(r

′) ≥ minsup and conf (r ′) ≥ conf (r) + θ then
q.enqueue(r ′)

Algorithm 2 shows our mining algorithm. It takes as input the

PCDataset computed by Algorithm 1, the KB history, a minimum

support threshold, a minimum confidence threshold, and a regular-

ization threshold θ . These thresholds are chosen empirically (see

Section 7.3). The algorithm produces correction rules (Definition 8).

For this purpose, it first generates a trivial rule r0 for each entry of

the PCDataset. This rule has as context simply the deletion part of

the constraint past correction. This trivial rule is then transformed

into several more general rules, which we call basic rules, each of

which is obtained from r0 by replacing some of the constants by

variables. Formally, the algorithm uses all partial substitutions σ
from constants to distinct fresh variables. It retains only those basic

rules that meet the minimum support and confidence thresholds.

In the second step, the algorithm incrementally refines each rule

by building up its context part E(®x, ®y, ®z). This works similarly to

the mining algorithm of [14]: Each refinement step adds one atom

built from the KB concept and role names and the variables and

constants that appear in the rule, plus at most one fresh variable.

For this purpose, the algorithm uses the operators defined in [14].

If the resulting rule meets the minimum support threshold, and

improves the confidence by at least θ , the rule is retained.
Note that Algorithm 2 outputs only rules that would have been

returned by the algorithm of [13, 14] if evaluated with our confi-

dence function. It prunes more rules because of the use of the θ and

the minconf thresholds that are also used to do an early pruning

of the rules during the context construction. Algorithm 2 can be

easily parallelized by running it independently on each constraint

and/or having multiple workers working on the same queue.

Applying correction rules.When all rules have been mined, they

are sorted by decreasing confidence, breaking ties by help of the

support (as it is done in [26] to build classifiers from rules). This

set of rules then forms a program that can be used to fix constraint

violations as follows. Given a violation V of a constraint Γ in K ,

choose the first rule r in the program that is relevant for Γ (i.e., that

contains [Γ(®x)] where Γ(®x) is a partially instantiated version of Γ).
Then check whether r can be applied toV . The correction is the

result of the rule application.

Example 7: Assume we mined the rules r1 and r2 of the preceding
example with confidence 0.9 and 0.8 respectively, and another rule
r3 := [Γ0(x)] : {hasGender(x,y)} → (∅, hasGender(x,y)) with con-
fidence 0.5. The correction program is (r1, r2, r3). To correct a violation
of Γ0, i.e. a wrong value for the hasGender property, the program first
checks whether r1 is applicable. If so, it replaces masculine by male.
Otherwise, it falls back to r3 and removes the wrong value. To correct a
violation of Γ2, it ignores r1 that is not related to Γ2 and either applies
r2 if the context matches or does nothing. ◁

7 EXPERIMENTS ONWIKIDATA
This section describes CorHist, which implements the framework

introduced for Wikidata, and presents its experimental evaluation.

7.1 Wikidata
Wikidata is a generalist collaborative knowledge base. The project

started in 2012, and as of July 2018, it has collected more than 500M

statements about 50M entities. The data about each entity is stored

in a versioned JSON blob, and there are more than 700M revisions.

Wikidata encodes facts not in plain RDF triples but in a reified

representation, in which each main ⟨s,p,o⟩ triple can be annotated

with qualifiers and provenance information [38].

Wikidata knows the property instanceOf which is similar to

rdf:type. It does not have a formally defined TBox, but knows

properties such as subClassOf, subPropertyOf, and inverseOf.
However, only the property subClassOf is used to flag the con-

straint violations. Therefore, we use only this property in our TBox,

which thus contains simple concept inclusions.

We consider the set C of constraints built from ten types of

Wikidata property constraints (see Table 3). They are the top Wiki-

data property constraints that can be expressed in DL, covering

the majority of the most used constraints, as well as 71% of Wiki-

data property constraints. The remaining constraints are mainly

about string format validation with regular expressions (52% of the

remaining constraints) and about qualifiers (31% of them).

7.2 Dataset Construction
We stored the RDF version [10, 18] of the Wikidata edit history

in an RDF quad store. We used named graphs for the global state

of Wikidata after each revision, and for the triple additions and

deletions. Our dataset stores 390M annotated triples about 49M

items extracted from the July 1st, 2018 full database dump.

We extracted the relevant past corrections as explained in Sec-

tion 6.1. Wikidata revisions do not correspond exactly to atomic

modifications in our sense. For example, Wikidata bots are able to

change multiple unrelated facts about the same entity at the same

Table 3: Wikidata property constraints. R is the property for which the constraint is given. A constraint has several lines
when it uses a property whose set of values may be specified or not. ♯constr. is the total number of constraints of the given
type in Wikidata. ♯triples is the sum for all these constraints of the numbers of triples with the property R on which they
apply. ♯violations is the number of violations for this constraint in Wikidata on July 1st, 2018. ♯past cor. is the number of past
corrections we extracted from Wikidata history. t.o. indicates that we were not able to extract all past corrections because of
timeout so that we sample them (we then indicate the number of corrections we extracted).

Name in Wikidata DL form Rule form ♯constr. ♯triples ♯violations ♯past cor.

Type
4 ∃R ⊑ A1 ⊔ · · · ⊔An ∃yR(x,y) → A1(x) ∨ · · · ∨An (x) 2575 249M 3465k t.o.(>16M)

Value type
4 ∃R− ⊑ A1 ⊔ · · · ⊔An ∃yR(y, x) → A1(x) ∨ · · · ∨An (x) 696 67M 3062k t.o.(>19M)

One-of ∃R− ⊑ {a1, . . . ,an } ∃yR(y, x) → x = a1 ∨ · · · ∨ x = an 104 3.6M 4k 14k

Item requires ∃R ⊑ ∃R′ · {a1, . . . ,an } ∃yR(x,y) → R′(x,a1) ∨ · · · ∨ R′(x,an) 3102 255M 3710k t.o.(>15M)

statement ∃R ⊑ ∃R′ ∃yR(x,y) → ∃zR′(x, z)

Value requires ∃R− ⊑ ∃R′ · {a1, . . . ,an } ∃yR(y, x) → R′(x,a1) ∨ · · · ∨ R′(x,an) 243 85M 1345k t.o.(>6M)

statement ∃R− ⊑ ∃R′ ∃yR(y, x) → ∃zR′(x, z)

Conflict with ∃R ⊑ ¬∃R′ · {a1, . . . ,an } ∃yR(x,y) ∧ (R′(x,a1) ∨ · · · ∨ R′(x,an)) → false 601 449M 142k 465k

∃R ⊑ ¬∃R′ ∃yzR(x,y) ∧ R′(x, z) → false
Inverse/Symmetric

5 R ⊑ R′− R(x,y) → R′(y, x) 146 6M 409k 2989k

Single value (funcR) R(x,y) ∧ R(x, z) → y = z 2772 85M 334k 389k

Distinct values (funcR−) R(y, x) ∧ R(z, x) → y = z 2728 56M 189k 7432k

time. Wikidata users also sometimes prefer to delete a statement

then add another one with the same property instead of directly

modifying the value, in order to clear the existing qualifiers and

references. Therefore, we artificially created a replacement modifi-

cation for every deletion with a neighboring addition by the same

user, which shares at least two components of the triple (analo-

gously for additions). For example, if the correction seed is the

deletion of ⟨Zeus, hasGender,masculine⟩, and if this revision or a

neighboring one adds ⟨Zeus, hasGender,male⟩, then we consider

this a replacement. However, if the same revision added the triple

⟨Zeus, hasMother, Rhea⟩, then wewould not consider this a replace-
ment, because it does not share two components with the first one.

Since the TBox consists of simple concept inclusions and the

constraint bodies contain only roles, the deletion patterns for cor-

rection seeds correspond directly to the atoms of the constraint

body. In the same vein, only atoms in the head of the Type or Value
type constraints need to be rewritten. To find the constraint viola-

tions solved by a correction seed, we make use of the fact that the

correction seed allows us to know the constraint instance Γ(®a), and
we look for matches of the constraint instance body.

To speed up the execution for the four constraint types which

have the highest numbers of past corrections, Type, Value type, Item
requires statement and Value requires statement, we did not extract

all the past corrections but sample them as follows. We compute

only the relevant past corrections that where applied between Ki
and Ki+1 where i is a multiple of s := max(1,N /106) with N the

number of triples with the property R of the constraint at hand.

This sampling allows us to get a sufficient ground for rule mining

4
The Wikidata constraint Type can be qualified to modify its meaning. We ignore

these cases, which are marginal: they concern less than 6% of the Type constraints.
The same goes analogously for Value type.
5 Inverse and Symetric are two distinct kinds of constraints in Wikidata but we treat

them together since Symetric is actually a special case of Inverse.

for each constraint. In practice, it affects only the most frequent

0.9% of Type, 2% of Value type, 0.5% of Item requires statement, and
3% of Value requires statement constraints.

7.3 Mining Rules
The output of our method is a set of correction rules that form a

program (Section 6.2). To evaluate such a program, we apply it to

each of the constraint violations stored in the PCDataset, using the
associated stage of the KB to evaluate the part of the context which

is not the deletion part of the correction. Then we check whether

the correction we compute is exactly the same as the one associated

to the constraint violation in the PCDataset. The precision p of the

program is given by the fraction of the corrections computed by

the program that are actually the same as those that have been

applied. The recall r of the program is the fraction of the constraint

violations stored in PCDataset for which the program gives some

correction. The F1 score is F1 = 2
p ·r
p+r .

CorHist mines rules as explained in Section 6.2. In order to de-

crease the computation time, we only allow one atom p(s,o) in
E(®x, ®y, ®z) \ Body(®x, ®y), where Body(®x, ®y) corresponds to the part of

the context that matches part of the constraint body, such that s is
a variable of ®x ∪ ®y and o is a fresh variable or a constant.

Rules were mined per constraint. For each constraint, we split

the set of extracted past corrections into a 70% training set, a 10%

cross-validation set, and a 20% test set. The training set is used to

mine the rules, the cross-validation set is used to determine the

confidence threshold that maximizes the F1 score of the obtained

program, and the test set is used to evaluate the final program.

Table 4 gives examples of rules mined by CorHist. Several of

these rules show the crucial importance of the instantiation of the

constraint and/or of the context to be able to choose the correction.

For instance, the rule for the Single value constraint uses the fact
that an entity involved in a property “member of sport team” is

Table 4: Example of mined rules.

Constr. type Constraint Γ Correction rule

Type ∃isAListOf ⊑ List [Γ(s)] : isAListOf(s , o) ∧WikiDisambiguationPage(s) → (∅, isAListOf(s , o))
Value type ∃foundInTax− ⊑ Taxon [Γ(human)] : foundInTax(s , human) ∧ hasPart(s , v) → (foundInTax(s , homoSapiens), foundInTax(s , human))
One-of ∃mannerDeath− ⊑ {. . . } [Γ(trafficAcc)] : mannerDeath(s , trafficAcc) → (causeDeath(s , trafficAcc),mannerDeath(s , trafficAcc))
Item req. stm. ∃heritageStatus ⊑ ∃country [Γ(s)] : heritageStatus(s ,monumentInFornminnesregistret) → (country(s , Sweden), ∅)
Val. req. stm. ∃residence− ⊑ ∃country [Γ(s)] : diplomaticRelation(s , v) → (country(s , s), ∅)
Conflict ∃filmplID ⊑ ¬∃filmplFilmID [Γ(s)] : filmplID(s , o) → (∅, filmplID(s , o))
Inv./Sym. geneticAssoc ⊑ geneticAssoc− [Γ(s , o)] :→ (geneticAssoc(o, s), ∅)
Single val. (func sexOrGender) [Γ(s)] : sexOrGender(s ,maleOrg) ∧ sportsTeam(s , v) → (∅, sexOrGender(s ,maleOrg))
Distinct val. (func ncbiLocusTag−) [Γ(s)] : ncbiLocusTag(o, s) ∧molecularFunction(o, v) → (∅, ncbiLocusTag(o, s))

probably a human being, and thus that if it has several values for

the functional property “sex or gender” and one of them is a value

reserved for non-human organisms in Wikidata, this value is proba-

bly wrong. In the same vein, the rule for the Item requires statement
constraint recognizes that an entity has a heritage designation that

is specific to Sweden (“monument in Fornminnesregistret”), to con-

clude that its country is Sweden. The rules also propose fixes to

misused predicates: in Wikidata, the property “manner of death” is

intended for the general circumstances of a person’s death (such as

“accident”), while the property “cause of death” is intended to give

more precise causes (such as “traffic accident”).

7.4 Evaluation against the Test Set
Table 5 presents the results of the evaluation of the mined programs

against the test set. We computed both the micro and macro av-

erage of the precision, recall and F1 score per kind of constraint.

The micro average aggregates over the whole set of relevant past

corrections for the given kind of constraint, whereas the macro

average computes the scores for each constraint of this given kind,

and then computes the average. Both numbers are important: The

micro average gives more weight to correction rules that fix many

violations. It thus measures the overall impact of the correction

rules on the dataset. However, if few rules had a large impact, then

it would be easier to formulate these rules by hand. Our method, in

contrast, can also find rules that by themselves solve less violations,

but together contribute a large mass of corrections. To illustrate

this, we also report the macro average: It measures the average

performance across different constraints.

We compare our approach with two baselines: The first one,

called “delete”, is the most basic one and uses the fact that all

Wikidata constraint bodies contain an atom of the form R(x,y)
and the TBox contains only concept inclusions, so that all con-

straint violations contain an assertion that matches R(x,y). The
“delete” baseline simply deletes this assertion. For the completeness

constraints we define an additional baseline, “add”, which tries to

add a new triple to solve the constraint violation. For Inverse and
Symmetric constraints this baseline adds the missing reverse edge

and performs very well. For Item requires statement, Value requires
statement, Type and Value type, it adds the missing triple only if

it is possible to know the expected value from the constraint rule.

6
Computed from a sample of the set of relevant past corrections. One Type constraint,
six Value type constraints and one Val. req. stm constraint were omitted due to time-out.

7
The actual value is greater than 0.995 and rounded to 1 for consistency.

Table 5: Evaluation of the correction rulesmined by CorHist
with aminimal support of 10, aminimal confidence between
0.5 and 1 and a regularization threshold of 0.05, and compar-
ison with the baselines. Best precision and F1 scores in bold.

Micro average Macro average

Constraint type Prec. Rec. F1 Prec. Rec. F1

Type
6

add 0.35 0.33 0.34 0.29 0.55 0.38

delete 0.04 1 0.07 0.13 1 0.23

CorHist 0.84 0.70 0.76 0.91 0.39 0.55
Value type

6
add 0.09 0.21 0.13 0.33 0.58 0.42

delete 0.01 1 0.02 0.16 1 0.27

CorHist 0.81 0.61 0.70 0.89 0.51 0.65
One-of delete 0.26 1 0.42 0.35 1 0.52

CorHist 0.77 0.83 0.80 0.95 0.37 0.53
Item requires add 0.99 0.14 0.25 0.80 0.27 0.40

statement
6

delete 0.017 1 0.033 0.10 1 0.19

CorHist 0.94 0.35 0.51 0.95 0.32 0.47
Value requires add 0.44 20e-6 41e-6 0.33 0.12 0.18

statement
6

delete 0.041 1 0.079 0.082 1 0.15

CorHist 0.91 0.53 0.67 0.94 0.37 0.53
Conflict with delete 0.39 1 0.56 0.39 1 0.56

CorHist 0.92 0.55 0.69 0.91 0.41 0.57
Inverse/Sym. add 0.91 1 0.95 0.77 1 0.86

delete 0.072 1 0.12 0.14 1 0.24

CorHist 0.92 1
7 0.96 0.90 0.84 0.87

Single value delete 0.34 1 0.51 0.42 1 0.59
CorHist 0.95 0.093 0.17 0.96 0.078 0.14

Distinct values delete 0.036 1 0.070 0.42 1 0.59
CorHist 0.99 0.020 0.039 0.93 0.12 0.21

For example, for Type constraints of the form ∃yR(x,y) → A(x)
it applies the correction (A(x), ∅). Value type constraints are han-
dled in the same way. However, this baseline is not able to figure

out what is the relevant addition correction for a constraint of the

form ∃yR(x,y) → A1(x) ∨A2(x) because there is no way to know

a priori if A1 or A2 should be added. For Item requires statement
constraints of the form ∃yR(x,y) → R′(x,a), the “add” baseline ap-
plies (R′(x,a), ∅) (similarly for Value requires statement constraints).
However, it cannot find a correction if there are multiple ai .

Figure 1: Example of a replacement correction suggested by CorHist for a violation of the constraint ∃countryOfCitizenship ⊑

¬∃sexOrGender · {maleOrg, femaleOrg}.

Table 6: Human evaluation of the suggested corrections.

Constraint type Suggested “Apply” “Wrong” Approval

Type 9908 252 312 0.45

Value type 2374 195 208 0.48

One-of 239 14 47 0.23

Item requires stm. 41 8 32 0.2

Value requires stm. 1024 790 178 0.82

Conflict with 3254 1717 203 0.89

Inverse/Symmetric 28138 20247 1720 0.92

Single value 3264 41 71 0.37

Distinct values 921 8 23 0.26

As shown in Table 5, the precision of our approach significantly

outperforms the two baselines – often by a very high margin. Re-

garding the recall, we manage to keep a reasonable, and sometimes

even good, recall (see best F1 scores in Table 5), except for Single
and Distinct value. The very low recall obtained for these two kinds

of constraints is easily explainable because they are mostly used on

predicates that link Wikidata to other databases (91% of the Single
and 95% of the Distinct constraints), and we cannot get meaningful

information about the target database to mine corrections.

7.5 User Evaluation
To see whether our corrections are accepted by the community,

we designed a user study. We created a tool that suggests our cor-

rections to Wikidata users for validation (available at https://tools.

wmflabs.org/wikidata-game/distributed/#game=43). The user can

choose a constraint type, and the tool then suggests corrections

for random violations of constraints of this type (Figure 1). The

violations for which corrections are suggested are provided by

query.wikidata.org, which limits their number for performance

reasons. For each proposed correction, the user has to choose be-

tween three options: apply the proposed correction to Wikidata,

tag it as wrong, or get another correction to review. We ran the

experiment for 3 months and 47 Wikidata users participated.

Table 6 presents the results. The number of corrections reviewed

is highly unbalanced between the kinds of constraints, mainly be-

cause a few users evaluate a lot of suggestions, and have a predilec-

tion for some kinds of constraints. It is thus difficult to draw conclu-

sions for those kinds of constraints for which very few corrections

have been evaluated. However, we can still make some interesting

observations. In particular, the proposed corrections marked as

wrong give us insights about possible weaknesses of our approach.

For the constraints which got a significant number of evaluations,

our approach seems to perform well for Inverse and Symmetric,
Conflict with and Value requires statement constraints, with approval
rates above 80%. The other approval rates are lower. This is partly

due to biases in the data. For example, when a gender is missing, our

approach proposes the value “male” by default, because of the over-

representation of men in Wikidata. Another issue is the quality of

the constraints, which in Wikidata are sometimes questionable or

difficult to understand (e.g., an incomplete set of possible types or

values for completeness or One-of constraints).

However, even lower approval scores do not mean that our ap-

proach would be useless: Psychological research [12] shows that

people find it much easier to choose from given options than to

come up with an answer by themselves. The actual time needed to

come up with an answer may vary, but if it takes just 3 times longer

to come up with an answer than to accept or reject our proposed

correction, then achieving a precision of 40% is already useful: If we

have a precision of 40%, and if a free-form answer takes time t , then
the expected answer time with our tool is 40%× 1

3
×t+60%× 4

3
×t < t .

8 CONCLUSION AND FUTUREWORK
We have introduced the problem of learning how to fix constraint

violations from a KB history. We have also presented a method

based on rule mining to this end. Our experimental evaluation on

Wikidata shows significant improvement over baselines. Our tool is

live onWikidata and has already allowed users to correct more than

23k constraint violations.While our evaluation focused onWikidata

for which the whole edit history was available, we believe that our

method can be applied in other settings, for example using edits

done during the partial cleaning of an automatically extracted KB.

For future work, it would be interesting to evaluate the impact of

parameters such as the size of the context part of the correction rule

in terms of rule quality. We also plan to extend the learning dataset

with external knowledge (such as other KBs), or with information

extracted from other sources (for instance from Wikipedia). We

believe that this will allow finding even more precise correction

rules, thus making KBs ever more precise and more useful.

ACKNOWLEDGMENTS
Partially supported by the grant ANR-16-CE23-0007-01 (“DICOS”).

https://tools.wmflabs.org/wikidata-game/distributed/#game=43
https://tools.wmflabs.org/wikidata-game/distributed/#game=43

REFERENCES
[1] Maribel Acosta, Amrapali Zaveri, Elena Simperl, Dimitris Kontokostas, Fabian

Flöck, and Jens Lehmann. 2018. Detecting Linked Data quality issues via

crowdsourcing: A DBpedia study. Semantic Web 9, 3 (2018), 303–335. https:

//doi.org/10.3233/SW-160239

[2] Abdallah Arioua and Angela Bonifati. 2018. User-guided Repairing of Inconsistent

Knowledge Bases. In Proceedings of the 21th International Conference on Extending
Database Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018. 133–144.
https://doi.org/10.5441/002/edbt.2018.13

[3] Ahmad Assadi, Tova Milo, and Slava Novgorodov. 2018. Cleaning Data with

Constraints and Experts. In Proceedings of the 21st International Workshop on the
Web and Databases, Houston, TX, USA, June 10, 2018. 1:1–1:6. https://doi.org/10.

1145/3201463.3201464

[4] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider (Eds.). 2003. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press.

[5] Moria Bergman, Tova Milo, Slava Novgorodov, and Wang-Chiew Tan. 2015.

QOCO: A Query Oriented Data Cleaning System with Oracles. PVLDB 8, 12

(2015), 1900–1903. https://doi.org/10.14778/2824032.2824096

[6] Meghyn Bienvenu, Camille Bourgaux, and François Goasdoué. 2016. Query-

Driven Repairing of Inconsistent DL-Lite Knowledge Bases. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016. 957–964.

[7] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,

Richard Cyganiak, and Sebastian Hellmann. 2009. DBpedia - A crystallization

point for the Web of Data. Journal of Web Semantics 7, 3 (2009), 154–165. https:

//doi.org/10.1016/j.websem.2009.07.002

[8] Iovka Boneva, José Emilio Labra Gayo, and Eric G. Prud’hommeaux. 2017. Se-

mantics and Validation of Shapes Schemas for RDF. In The Semantic Web - ISWC
2017 - 16th International Semantic Web Conference, Vienna, Austria, October 21-25,
2017, Proceedings, Part I. 104–120. https://doi.org/10.1007/978-3-319-68288-4_7

[9] Richard Cyganiak, David Wood, and Markus Lanthaler. 2014. RDF

1.1 Concepts and Abstract Syntax. http://www.w3.org/TR/2014/

REC-rdf11-concepts-20140225/

[10] Fredo Erxleben, Michael Günther, Markus Krötzsch, Julian Mendez, and Denny

Vrandečić. 2014. Introducing Wikidata to the Linked Data Web. In The Semantic
Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part I. 50–65. https://doi.org/10.1007/

978-3-319-11964-9_4

[11] Sergio Flesca, Sergio Greco, and Ester Zumpano. 2004. Active integrity constraints.

In Proceedings of the 6th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming, 24-26 August 2004, Verona, Italy. 98–107.
https://doi.org/10.1145/1013963.1013977

[12] Steven C Funk and K Laurie Dickson. 2011. Multiple-choice and short-answer

exam performance in a college classroom. Teaching of Psychology 38, 4 (2011),

273–277.

[13] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. 2015.

Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24, 6
(2015), 707–730. https://doi.org/10.1007/s00778-015-0394-1

[14] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek.

2013. AMIE: association rule mining under incomplete evidence in ontological

knowledge bases. In 22nd International World Wide Web Conference, WWW ’13,
Rio de Janeiro, Brazil, May 13-17, 2013. 413–422. https://doi.org/10.1145/2488388.

2488425

[15] Birte Glimm, Aidan Hogan, Markus Krötzsch, and Axel Polleres. 2012. OWL: Yet

to arrive on the Web of Data?. In WWW2012 Workshop on Linked Data on the
Web, Lyon, France, 16 April, 2012.

[16] Bernardo Cuenca Grau, Boris Motik, Zhe Wu, Ian Horrocks, Achille Fokoue,

and Carsten Lutz. 2009. OWL 2 Web Ontology Language Profiles. https:

//www.w3.org/TR/owl2-profiles/

[17] Ramanathan Guha and Dan Brickley. 2014. RDF Schema 1.1. http://www.w3.

org/TR/2014/REC-rdf-schema-20140225/

[18] Daniel Hernández, AidanHogan, andMarkus Krötzsch. 2015. Reifying RDF:What

Works Well With Wikidata?. In Proceedings of the 11th International Workshop on
Scalable Semantic Web Knowledge Base Systems co-located with 14th International
Semantic Web Conference (ISWC 2015), Bethlehem, PA, USA, October 11, 2015.
32–47.

[19] Vinh Thinh Ho, Daria Stepanova, Mohamed H. Gad-Elrab, Evgeny Kharlamov,

and Gerhard Weikum. 2018. Rule Learning from Knowledge Graphs Guided

by Embedding Models. In The Semantic Web - ISWC 2018 - 17th International
Semantic Web Conference, Monterey, CA, USA, October 8-12, 2018, Proceedings, Part
I. 72–90. https://doi.org/10.1007/978-3-030-00671-6_5

[20] Joanna Józefowska, Agnieszka Lawrynowicz, and Tomasz Lukaszewski. 2010.

The role of semantics in mining frequent patterns from knowledge bases in

description logics with rules. TPLP 10, 3 (2010), 251–289. https://doi.org/10.1017/

S1471068410000098

[21] Aditya Kalyanpur, Bijan Parsia, MatthewHorridge, and Evren Sirin. 2007. Finding

All Justifications of OWL DL Entailments. In The Semantic Web, 6th International
Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 +
ASWC 2007, Busan, Korea, November 11-15, 2007. 267–280. https://doi.org/10.

1007/978-3-540-76298-0_20

[22] Holger Knublauch and Dimitris Kontokostas. 2017. Shapes Constraint Language

(SHACL). https://www.w3.org/TR/shacl/

[23] Roman Kontchakov and Michael Zakharyaschev. 2014. An Introduction to De-

scription Logics and Query Rewriting. In Reasoning Web. Reasoning on the Web in
the Big Data Era - 10th International Summer School 2014, Athens, Greece, September
8-13, 2014. Proceedings. 195–244. https://doi.org/10.1007/978-3-319-10587-1_5

[24] Dimitris Kontokostas, Patrick Westphal, Sören Auer, Sebastian Hellmann, Jens

Lehmann, Roland Cornelissen, and Amrapali Zaveri. 2014. Test-driven evaluation

of linked data quality. In 23rd International World Wide Web Conference, WWW
’14, Seoul, Republic of Korea, April 7-11, 2014. 747–758. https://doi.org/10.1145/

2566486.2568002

[25] Jiaqing Liang, Yanghua Xiao, Yi Zhang, Seung-won Hwang, and Haixun Wang.

2017. Graph-Based Wrong IsA Relation Detection in a Large-Scale Lexical Taxon-

omy. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA. 1178–1184.

[26] Bing Liu, Wynne Hsu, and Yiming Ma. 1998. Integrating Classification and

Association Rule Mining. In Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining (KDD-98), New York City, New York, USA,
August 27-31, 1998. 80–86.

[27] Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla,

and Heiner Stuckenschmidt. 2018. Fine-Grained Evaluation of Rule- and

Embedding-Based Systems for Knowledge Graph Completion. In The Seman-
tic Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey,
CA, USA, October 8-12, 2018, Proceedings, Part I. 3–20. https://doi.org/10.1007/

978-3-030-00671-6_1

[28] Boris Motik, Ian Horrocks, and Ulrike Sattler. 2009. Bridging the gap between

OWL and relational databases. J. Web Sem. 7, 2 (2009), 74–89. https://doi.org/10.

1016/j.websem.2009.02.001

[29] Boris Motik and Peter Patel-Schneider. 2009. OWL 2 Web Ontology Language

Mapping to RDF Graphs. https://www.w3.org/TR/owl-mapping-to-rdf/

[30] Peter F. Patel-Schneider. 2015. Using Description Logics for RDF Constraint

Checking and Closed-World Recognition. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA.
247–253.

[31] Heiko Paulheim and Christian Bizer. 2014. Improving the Quality of Linked Data

Using Statistical Distributions. Int. J. Semantic Web Inf. Syst. 10, 2 (2014), 63–86.
https://doi.org/10.4018/ijswis.2014040104

[32] Christos Rantsoudis, Guillaume Feuillade, and Andreas Herzig. 2017. Repairing

ABoxes through Active Integrity Constraints. In Proceedings of the 30th Interna-
tional Workshop on Description Logics, Montpellier, France, July 18-21, 2017.

[33] Viachaslau Sazonau, Uli Sattler, and Gavin Brown. 2015. General Terminology

Induction in OWL. In The Semantic Web - ISWC 2015 - 14th International Semantic
Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part I.
533–550. https://doi.org/10.1007/978-3-319-25007-6_31

[34] Stefan Schlobach and Ronald Cornet. 2003. Non-Standard Reasoning Services

for the Debugging of Description Logic Terminologies. In IJCAI-03, Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco,
Mexico, August 9-15, 2003. 355–362.

[35] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core

of semantic knowledge. In Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007. 697–706.
https://doi.org/10.1145/1242572.1242667

[36] Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita Mirza,

and GerhardWeikum. 2017. Completeness-Aware Rule Learning from Knowledge

Graphs. In The Semantic Web - ISWC 2017 - 16th International Semantic Web
Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part I. 507–525.
https://doi.org/10.1007/978-3-319-68288-4_30

[37] Jiao Tao, Evren Sirin, Jie Bao, and Deborah L. McGuinness. 2010. Integrity

Constraints in OWL. In Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010.

[38] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative

knowledgebase. Commun. ACM 57, 10 (2014), 78–85. https://doi.org/10.1145/

2629489

[39] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-

bedding Entities and Relations for Learning and Inference in Knowledge Bases.

CoRR abs/1412.6575 (2014). arXiv:1412.6575 http://arxiv.org/abs/1412.6575

[40] Fan Yang, Zhilin Yang, and William W. Cohen. 2017. Differentiable Learning of

Logical Rules for Knowledge Base Reasoning. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA. 2316–2325.

https://doi.org/10.3233/SW-160239
https://doi.org/10.3233/SW-160239
https://doi.org/10.5441/002/edbt.2018.13
https://doi.org/10.1145/3201463.3201464
https://doi.org/10.1145/3201463.3201464
https://doi.org/10.14778/2824032.2824096
https://doi.org/10.1016/j.websem.2009.07.002
https://doi.org/10.1016/j.websem.2009.07.002
https://doi.org/10.1007/978-3-319-68288-4_7
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1145/1013963.1013977
https://doi.org/10.1007/s00778-015-0394-1
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1145/2488388.2488425
https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://doi.org/10.1007/978-3-030-00671-6_5
https://doi.org/10.1017/S1471068410000098
https://doi.org/10.1017/S1471068410000098
https://doi.org/10.1007/978-3-540-76298-0_20
https://doi.org/10.1007/978-3-540-76298-0_20
https://www.w3.org/TR/shacl/
https://doi.org/10.1007/978-3-319-10587-1_5
https://doi.org/10.1145/2566486.2568002
https://doi.org/10.1145/2566486.2568002
https://doi.org/10.1007/978-3-030-00671-6_1
https://doi.org/10.1007/978-3-030-00671-6_1
https://doi.org/10.1016/j.websem.2009.02.001
https://doi.org/10.1016/j.websem.2009.02.001
https://www.w3.org/TR/owl-mapping-to-rdf/
https://doi.org/10.4018/ijswis.2014040104
https://doi.org/10.1007/978-3-319-25007-6_31
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Constraints
	5 Corrections
	6 From History to Correction Rules
	6.1 Extraction of the Relevant Past Corrections
	6.2 Correction Rule Mining

	7 Experiments on Wikidata
	7.1 Wikidata
	7.2 Dataset Construction
	7.3 Mining Rules
	7.4 Evaluation against the Test Set
	7.5 User Evaluation

	8 Conclusion and Future Work
	Acknowledgments
	References

