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Abstract
Knowledge graphs (KGs) are huge collections of
primarily encyclopedic facts that are widely used
in entity recognition, structured search, question an-
swering, and other tasks. Rule mining is commonly
applied to discover patterns in KGs. However, un-
like in traditional association rule mining, KGs pro-
vide a setting with a high degree of incompleteness,
which may result in the wrong estimation of the qual-
ity of mined rules, leading to erroneous beliefs such
as all artists have won an award. In this paper we
propose to use (in-)completeness meta-information
to better assess the quality of rules learned from
incomplete KGs. We introduce completeness-aware
scoring functions for relational association rules.
Experimental evaluation both on real and synthetic
datasets shows that the proposed rule ranking ap-
proaches have remarkably higher accuracy than the
state-of-the-art methods in uncovering missing facts.

1 Introduction
Motivation. Advances in information extraction have led to
general-purpose knowledge graphs (KGs) containing billions
of positive facts about the world (e.g., [Carlson et al., 2010;
Bollacker et al., 2007; Auer et al., 2007; Mahdisoltani et al.,
2015]). KGs are widely applied in semantic web search, ques-
tion answering, web extraction and many other tasks. Unfortu-
nately, due to their wide scope, KGs are generally incomplete.
To account for the incompleteness, they typically adopt the
Open World Assumption (OWA) under which missing facts
are treated as unknown rather than false.

An important task over KGs is rule learning [Galarraga
et al., 2015; Gad-Elrab et al., 2016; Sazonau et al., 2015;
Wang and Li, 2015; Lisi, 2010; d’Amato et al., 2016],
which is relevant for a variety of applications ranging
from knowledge graph curation (completion, error detec-
tion) [Paulheim, 2017] to data mining and semantic cul-
turonomics [Suchanek and Preda, 2014]. However, since
such rules are learned from incomplete data, they might be
erroneous and might make incorrect predictions on miss-
ing facts. For example, from the KG in Fig. 1 the rule
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Figure 1: Example KG

r1 : hasChild(X ,Y )← worksAt(X,Z), educatedAt(Y, Z)
could be mined, which states that workers of certain institu-
tions often have children among the people educated there,
as this is frequently the case for popular scientists. While r1
is clearly not universal and should be ranked lower than the
rule r2 : hasSibling(X,Z)← hasFather(X, Y), hasChild(Y, Z),
standard rule measures like confidence (i.e., conditional prob-
ability of the rule’s head given its body) incorrectly favor r1
over r2 for the given KG.

Efforts have been put into adding completeness informa-
tion to databases [Levy, 1996; Etzioni et al., 1997] and re-
cently to knowledge bases [Razniewski et al., 2016; Darari
et al., 2013]. This could be done by detecting the concrete
numbers of facts of certain types that hold in the real world
(e.g., “Einstein has 3 children”) exploiting Web extraction
or crowd-sourcing [Prasojo et al., 2016; Darari et al., 2016;
Mirza et al., 2017]. Such meta-data provides a lot of hints
about the KG’s topology, and reveals parts that should be
especially targeted by rule learning methods. However, sur-
prisingly, to date, no systematic way of making use of such
information in rule learning exists.

In this work we exploit meta-data about the expected num-
ber of edges in KGs for better assessment of learned rules.

State of the art and its limitations. In [Galarraga et al.,
2015] a completeness-aware rule scoring based on the partial
completeness assumption (PCA) was introduced. The idea of
PCA is that whenever at least one object for a given subject
and a predicate is in a KG (e.g., “Eduard is Einstein’s child”),
then all objects for that subject-predicate pair (Einstein’s chil-
dren) are assumed to be known. This assumption was taken
into account in rule scoring, and empirically it turned out to



be indeed valid in real-world KGs for some topics. However,
PCA inappropriately treats cases, when edges in a graph are
randomly missing. Similarly, whether to count absence of
contradiction as confirmation for default rules was discussed
in [Doppa et al., 2011]. In [Galárraga et al., 2017] new com-
pleteness data was learned from a KG by taking as ground
truth completeness data obtained via crowd-sourcing. The
acquired statements were used in a post-processing step of
rule learning to filter out violating predictions. However, this
kind of filtering does not have any impact on the quality of the
mined rules and the incorrect predictions for instances about
which no completeness information exists.

Contributions. In this shortened version of our work [Pel-
lissier Tanon et al., 2017] we present an approach that accounts
for meta-data about the number of edges that should exist for
given subject-predicate pairs in the ranking stage of rule learn-
ing. The novel rule ranking measures have been evaluated
both on real-world and synthetic datasets, showing that they
outperform existing ones both with respect to the quality of
the mined rules and the predictions they produce.

2 Preliminaries
Knowledge graphs. Knowledge graphs (KG) represent in-
terlinked collections of factual information, and they are often
encoded using the RDF data model [Lassila and Swick, 1999].
The content of KGs is a set of 〈subject predicate object〉
triples, e.g., 〈john hasChild alice〉. For encyclopedic knowl-
edge graphs on the semantic web, usually the open world
assumption (OWA) is employed, i.e., these graphs contain
only a subset of the true information.

In the following we write triples using binary predicates,
like hasChild(john, alice). A signature of a KG G is ΣG =
〈R, C〉, where R is the set of binary predicates and C is the set
of constants appearing in G. Following [Darari et al., 2013],
we define the gap between the available graph Ga and the ideal
graph Gi, which contains all correct facts over R and C that
hold in the real world. An incomplete data source is a pair
G = (Ga,Gi) of two KGs, where Ga ⊆ Gi and ΣGa = ΣGi .
Note that the ideal graph Gi is an imaginary construct whose
content is generally not known. What is known instead is
to which extent the available graph approximates/lacks in-
formation wrt. the ideal graph, e.g., “Einstein is missing 2
children and Feynman none”). We formalize this knowledge
as cardinality assertions in Sec. 3.

Rule learning. Association rule learning concerns the dis-
covery of frequent patterns in a data set and the subsequent
transformation of these patterns into rules. A conjunctive
query Q over G is of the form p1(x1, y1), . . . , pm(xm, ym),
where xi and yi are symbolic variables or constants and
pi ∈ R are binary predicates. The answer of Q on G is the
set Q(G) = {(ν(x1), . . . , ν(xm), ν(y1), . . . , ν(ym)) | ∀i :
pi(ν(xi), ν(yi)) ∈ G} where ν is a function that maps vari-
ables and constants to elements of C. The support of Q in
G is the number of distinct tuples in the answer of Q on G
[Dehaspe and De Raedt, 1997].

An association rule is of the form Q1 ⇒ Q2, such that
Q1 and Q2 are both conjunctive queries and Q1 ⊆ Q2, i.e.,
Q1(G′) ⊆ Q2(G′) for any possible KG G′. We call Q2 the

body of the rule and Q1 its head. In this work we exploit
association rules for reasoning purposes, and thus (with some
abuse of notation) treat them as logical rules, i.e., for Q1 ⇒
Q2 we write Q2\Q1 ← Q1, where Q2\Q1 refers to the set
difference between Q2 and Q1 seen as sets of atoms.

Classical scoring of association rules is based on rule
support, body support and confidence. For a rule r :
h(X ,Y )← B where B is a conjunctive query over the vari-
ables ~Z ⊇ X,Y and/or constants, they are defined in [Galar-
raga et al., 2015] as:

supp(r) := #(x, y) : ∃~Z : B ∧ h(x, y) (1)

supp(B) := #(x, y) : ∃~Z : B (2)

conf (r) :=
supp(r)

supp(B)
(3)

where #γ : Γ denotes the number of γ that fulfill the condition
Γ, and conf (r) ∈ [0, 1].
Example 1. Consider the KG Ga in Fig. 1 and the rules r1 :
hasChild(X ,Y )← worksAt(X,Z), educatedAt(Y,Z) and
r2 : hasSibling(X ,Z )← hasFather(X ,Y ), hasChild(Y ,Z )
mined from it. The body and rule supports of r1 over the KG
are supp(B) = 8 and supp(r1 ) = 2 respectively. Hence, we
have conf (r1 ) = 2

8 . Analogously, conf (r2 ) = 1
6 .

Support and confidence were originally developed for scor-
ing rules over complete data. If data is missing, their inter-
pretation is not straightforward and they can be misleading.
In [Galarraga et al., 2015], confidence under the partial com-
pleteness assumption (PCA) has been proposed as a measure,
which guesses negative facts by assuming that data is usually
added to KGs in batches, i.e., if at least one child of John is
known then most probably all John’s children are present in
the KG. Formally, the PCA confidence is defined as

confpca(r) :=
supp(r)

#(x, y) : ∃~Z : B ∧ ∃y′ : h(x, y′) ∈ Ga
(4)

Example 2. We obtain confpca(r1 ) = 2
4 . Indeed, since carol

and dave are not known to have any children in the KG, four
existing body substitutions are not counted in the denominator.
Meanwhile, we have confpca(r2 ) = 1

6 , since all people that
are predicted to have siblings by r2 already have siblings in
the available graph.

Given a rule r and a KG G the application of r on G results
in a rule-based graph completion. More formally,
Definition 1 (Rule-based KG completion). Let G be a KG
over the signature ΣG = 〈R, C〉 and let r : h(X ,Y )← B be
a rule mined from G, i.e. a rule over ΣG . Then the completion
of G is a graph Gr := G ∪ {h(x, y) | ∃~Z : B}.
Example 3. We have Gar1 = Ga ∪ { hasChild(john, dave),
hasChild(carol, mary), hasChild(dave, dave), hasChild(carol,
carol), hasChild(dave, bob), hasChild(mary, dave) }.

Note that Gi is the perfect completion of Ga, i.e., it is sup-
posed to contain all correct facts with entities and relations
from ΣGa that hold in the current state of the world. The goal
of rule-based KG completion is to extract from Ga a set of
rulesR such that ∪r∈RGar is as close to Gi as possible.



3 Completeness-aware Rule Scoring
Scoring and ranking rules are core steps in association rule
learning. A variety of measures for ranking rules have been
proposed, with prominent ones being confidence, conviction
and lift. The existing (in-)completeness-aware rule measure
in the KG context (the PCA confidence (4) [Galarraga et al.,
2015]) has two apparent shortcomings: First, it only counts
as counterexamples those pairs (x, y) for which at least one
h(x, y′) is in Ga for some y ′ and a rule’s head predicate h.
Hence, it may incorrectly give high scores to rules predicting
facts for very incomplete relations, e.g., place of baptism.
Second, it is not suited for data in non-functional relations that
is not added in batches, such as awards, where the important
ones are added instantly, while others much slower or never.

Thus, in this work we focus on the improvements of rule
scoring functions by making use of the extra (in-)completeness
meta-data. Before dwelling into the details of our approach
we discuss the formal representation of such meta-data.

Cardinality Statements. We represent the
(in)completeness meta-data using cardinality statements by
reporting (the numerical restriction on) the absolute number
of facts over a certain relation in the ideal graph Gi. More
specifically, we define the partial function num that takes
as input a predicate p and a constant s and outputs a natural
number corresponding to the number of facts in Gi over p
with s as the first argument:

num(p, s) := #o : p(s, o) ∈ Gi (5)

These cardinality statements can be obtained using web ex-
traction techniques [Mirza et al., 2017]. With such statements,
it is also possible to encode cardinalities on the number of
subjects for given predicates and objects, provided that inverse
relations can be expressed in a KG.

Naturally, the number of missing facts for a given p and s
can be obtained as

miss(p, s) := num(p, s)−#o : p(s, o) ∈ Ga (6)

Example 4. Consider the KG in Fig. 1. and the following
cardinality statements for it:
• num(hasChild , john) = num(hasChild ,mary) = 3;
num(hasChild , alice)=1;
num(hasChild , carol)=num(hasChild , dave)=0;
• num(hasSibling , bob) = 3; num(hasSibling , alice) =
num(hasSibling , carol)=num(hasSibling , dave)=2.

We then have:
• miss(hasChild ,mary) = miss(hasChild , john) =
miss(hasChild , alice)=1;
miss(hasChild , carol)=miss(hasChild , dave)=0;
• miss(hasSibling , bob)= miss(hasSibling , carol)=2;
miss(hasSibling ,alice) =miss(hasSibling ,dave)= 1.

We are now ready to define the completeness-aware rule
scoring problem. Given a KG and a set of cardinality state-
ments, completeness-aware rule scoring aims to score rules
not only by their predictive power on the known KG, but also
wrt. the number of wrongly predicted facts in complete areas
and newly predicted facts in known incomplete areas.

In the following we discuss and compare two novel ap-
proaches for completeness-aware rule scoring. These are
(i) the completeness confidence, and (ii) directional metric.
Henceforth, all examples consider the KG in Fig. 1, rules from
Ex. 1, and cardinality statements described in Ex. 4.

3.1 Completeness Confidence
In this work we propose to explicitly rely on incompleteness
information in determining whether to consider an instance as
a counterexample for a rule at hand or not.

To do that, we first define two indicators for a given rule
r : h(X ,Y )← ~B, reflecting the number of new predictions
made by r in incomplete (npi(r)) and, respectively, complete
(npc(r)) KG parts:

npi(r) :=
∑
x

min(#y:h(x, y)∈Gar \Ga,miss(h, x)) (7)

npc(r) :=
∑
x

max(#y:h(x, y)∈Gar \Ga−miss(h, x), 0)

(8)
Note that summation is done exactly over those entities for
which miss is defined. Exploiting these additional indicators
for r : h(X,Y )← ~B we obtain the following completeness-
aware confidence:

confcomp(r) :=
supp(r)

supp( ~B)−npi(r)
(9)

Example 5. The rule r2 matches more the real world than
r1 and, so, should be preferred over it. For our novel
completeness confidence, we get confcomp(r1 ) = 2

6 and
confcomp(r2 ) = 1

2 , resulting in the desired rule ordering,
not achieved by existing measures (see Ex. 1 and 2).

Under the closed world assumption confcomp(r) =
conf(r) because ∀x : miss(h, x) = 0. Similarly, under the
partial completeness assumption confcomp(r) = confpca(r).
Thus, our completeness confidence is a more general measure
than both the standard and the PCA confidence.

3.2 Directional Bias
If rule mining does make use of completeness information, and
both do not exhibit any statistical bias, then intuitively the rule
predictions and the (in)complete areas should be statistically
independent. On the other hand, correlation between the two
indicates that the rule-mining is (in)completeness-aware.
Example 6. Suppose in total a given KG stores 1 million
humans, and we know that 10,000 (1%) of these are missing
some children (incompleteness information), while we also
know that 1000 of the persons are definitely complete for
children (0.1%). Let the set of rules mined from a KG pre-
dict 50,000 new facts for the hasChild relation. Assuming
independence between predictions and (in)completeness state-
ments, we would expect 1% out of 50,000, i.e., 500 facts to
be predicted in the incomplete areas and 0.1%, i.e., 50 in the
complete KG parts. If instead we find 1000 children predicted
for people that are missing correspondingly many children,
and 10 for people that are not missing these, the former devi-
ates from the expected value by a factor of 2, and the latter by
a factor of 5.



Following the intuition from the above example, we propose
to look at the extent of the non-independence of completeness
information and rule mining to quantify the (in)completeness-
awareness of rule mining. Let us consider predictions made by
rules in a given KG, and denote by enpi(r) and enpc(r) the ex-
pected numbers of facts added by the rule r in the incomplete
and complete areas respectively. Then for α ∈ [0, 1] being
the weight given to completeness versus incompleteness, the
directional coefficient of r is defined as follows:

direct coef (r) := α · enpc(r)

npc(r)
+ (1− α) · npi(r)

enpi(r)
(10)

Unlike the other measures that range from 0 to 1, the direc-
tional coefficient takes values between 0 and infinity, where
1 is the default. The higher the directional coefficient is, the
more “completeness-aware” the rules are.

In practice, expected values might be difficult to compute,
and statistical independence is a strong assumption. An alter-
native that does not require knowledge about expected values
is to directly measure the proportion between predictions in
complete and incomplete parts. We call this the directional
metric, which is computed as

direct metric(r) :=
npi(r)− npc(r)

2 · (npi(r) + npc(r))
+ 0.5 (11)

The metric is similar to the directional coefficient, but does not
require knowledge about the expected number of predictions
in complete/incomplete KG parts. It is designed to range
between 0 and 1 again, thus allowing convenient weighting
with other [0, 1] measures. The directional metric of a rule
that predicts the same number of facts in incomplete as in
complete parts is 0.5, a rule that predicts twice as many facts
in incomplete parts has a value of 0.66, and so on.

We propose to consider the combination of a weighted
existing association rule measure, e.g., confidence or lift and
the directional metric, with the weighting factor β = 0..1.
Using confidence, we obtain

wdm(r)=β·conf (r)+(1−β)·direct metric(r) (12)

Example 7. It holds that direct metric(r1 ) ≈ 0.33 and
direct metric(r2 ) = 0.8. Moreover, for confidence we get
wdm(r1 ) ≈ 0.29 and wdm(r2 ) ≈ 0.48 with β = 0.5.

4 Evaluation
We have implemented our completeness-aware rule learning
approach in a C++ system prototype CARL1, following a
standard relational learning algorithm implementation such
as [Goethals and den Bussche, 2002].

We restrict the search space by mining rules of the form

r(X,Z)← p(X,Y ), q(Y,Z) (13)

We aim to compare the predictive quality of the top k rules
mined by our completeness-aware approach with the ones
learned by standard rule learning methods: (1) AMIE [Galar-
raga et al., 2015] (PCA confidence) and (2) WarmeR [Goethals
and den Bussche, 2002] (standard confidence).

1The source code and all the data are available at https:
//github.com/Tpt/CARL.
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Figure 2: Evaluation results for WikidataPeople and LUBM datasets

Dataset. We used two datasets for the evaluation: (i) Wiki-
dataPeople, which is a dataset we have created from the Wiki-
data knowledge graph, containing 2.4M facts over 9 predicates
about biographical information and family relationships of
people; and (ii) LUBM, which is a synthetic dataset describing
the structure of a university [Guo et al., 2011].

For the WikidataPeople dataset, the approximation of the
ideal KG (Gi) is obtained by applying solid rules from the
family domain. We acquired cardinality statements using data
from Freebase [Pellissier Tanon et al., 2016] and hand-crafted
rules relying on the PCA [Galarraga et al., 2015] assumption.
This resulted in 10M cardinality statements.

LUBM Gi, with 1.2M facts, was constructed by running
the LUBM data generator. 464K cardinality statements were
obtained by assuming the PCA on the whole dataset.

Experimental Setup. To assess the effect of our proposed
measures, we first construct versions of the available KG
(Ga) by removing parts of the data from Gi and introducing
a synthetic bias in the data (i.e., leaving many facts in Ga
for some relations and few for others). The synthetic bias is
needed to simulate our scenario of interest, where some parts
of Ga are very incomplete, while others are fairly complete,
which is indeed the case in real world KGs. In Wikidata, for
instance, 2.7% of all humans have an assertion about their
father, yet only 0.8% have an assertion about their mother.

We proceed in two steps: First, we define a global ratio,
which determines a uniform percentage of data retained in
the available graph. To further refine this, we then factor a
predicate ratio individually for each predicate.

For a given predicate, the final ratio of facts in Ga retained
from those in Gi is then computed as min(1, 2 · k · n), where
k is the predicate ratio and n is the global ratio.

The assessment of the rules learned from different versions
of the available KG is performed by comparing rule predic-
tions with the approximation of Gi. More specifically, every
learned rule is assigned a quality score, defined as:

quality score(r) =
|Gar ∩ Gi \ Ga|
|Gar \ Ga|

(14)

This scoring naturally allows us to control the percentage of
rule predictions that hit our approximation of Gi, similar to
standard precision estimation in machine learning.

Results. From every version of the available KG we have
mined rules of the form (13) and kept only rules r with

https://github.com/Tpt/CARL
https://github.com/Tpt/CARL


conf (r) ≥ 0.001 and supp(r) ≥ 10, whose head coverage
(ratio of the number of predicted facts that are in Ga over the
number of facts matching the rule head) is greater than 0.001.

Evaluation results for WikidataPeople and LUBM datasets
are in Figure 2. The horizontal axis displays the global ratio
used for generating Ga. The Pearson correlation factor (verti-
cal axis) between each ranking measure and the rules quality
score (14) is used to evaluate the measures’ effectiveness.

For the WikidataPeople KG, directional metric, weighted
directional metric and completeness confidence show the best
results. For the LUBM KG, the completeness confidence
outperforms the rest of the measures, followed by the standard
confidence and the weighted directional metric.

5 Conclusion
We have defined the problem of learning rules from incom-
plete KGs enriched with the exact numbers of missing edges
of certain types, and proposed several novel rule ranking mea-
sures that effectively make use of the meta-knowledge about
complete and incomplete KG parts: completeness confidence
and the (weighted) directional metric. Our measures have been
injected in the rule learning prototype CARL and evaluated
on real-world and synthetic KGs, demonstrating significant
improvements both with respect to the quality of mined rules
and predictions they produce.
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[Auer et al., 2007] Sören Auer, Christian Bizer, Georgi Kobilarov,

Jens Lehmann, Richard Cyganiak, and Zachary G. Ives. DBpedia:
A nucleus for a web of open data. In ISWC, pages 722–735, 2007.

[Bollacker et al., 2007] Kurt D. Bollacker, Robert P. Cook, and
Patrick Tufts. Freebase: A shared database of structured gen-
eral human knowledge. In AAAI, pages 1962–1963, 2007.

[Carlson et al., 2010] Andrew Carlson, Justin Betteridge, Bryan
Kisiel, Burr Settles, Estevam R. Hruschka Jr., and Tom M.
Mitchell. Toward an architecture for never-ending language learn-
ing. In AAAI, volume 5, page 3, 2010.

[d’Amato et al., 2016] Claudia d’Amato, Steffen Staab, Andrea GB
Tettamanzi, Tran Duc Minh, and Fabien Gandon. Ontology en-
richment by discovering multi-relational association rules from
ontological knowledge bases. In SAC, pages 333–338, 2016.

[Darari et al., 2013] Fariz Darari, Werner Nutt, Giuseppe Pirrò, and
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